Физика

Физики использовали заряженные кристаллические дефекты для плотной записи данных

Исследователи из Притцкеровской школы молекулярной инженерии Университета Чикаго (США) изучили технику создания единиц и нулей с помощью заряженных кристаллических дефектов. Каждый из них — размером не больше отдельного атома и может применяться в классической компьютерной памяти.

Если у объекта есть состояния «включено» и «выключено», его можно использовать для хранения информации в виде двоичного кода. В компьютерах этими объектами стали транзисторы, на CD-дисках — рельеф поверхности. 

Размеры такого объекта диктуют размеры устройства хранения информации. Инженеры и ученые постоянно стараются уменьшать размеры хранилищ памяти, ищут баланс между простотой записи, считывания, стоимостью и долговечностью прибора.

Физики нашли способ объединить физику твердого тела с исследованиями из области квантовых технологий и обеспечить запись информации в виде зарядов кристаллических дефектов оксида иттрия (Y2O3), легированного празеодимом (Pr).

«Каждая ячейка памяти — это один отсутствующий атом, один дефект. Теперь можно упаковать терабайты данных в маленький кубик материала размером всего один миллиметр», — сказал доцент UChicago PME Тянь Чжун (Tian Zhong).

Когда кристалл поглощает достаточно энергии, в нем высвобождаются электроны и генерируются дырки, отрицательно и положительно заряженные частицы. Эти заряды захватываются дефектами в кристалле. Информацию о заряде ученые могут считывать оптическими методами. По такому принципу работают пассивные дозиметры — измеряют дозу радиации, полученную работниками больниц и ускорителей элементарных частиц. 

Некоторые материалы способны хранить заряд от такого облучения достаточно долго. В исследовании использовали редкоземельный металл празеодим и кристалл оксида иттрия. Ученые утверждают, что описанный в статье процесс можно применять с другими материалами, используя оптические свойства редкоземельных элементов. Исследование опубликовано в журнале Nanophotonics

В отличие от дозиметров, которые обычно активируются рентгеновскими или гамма-лучами, новое устройство хранения данных активируется простым ультрафиолетовым лазером. Лазер стимулирует лантаноиды, они высвобождают электроны. Электроны захватываются некоторыми дефектами кристалла оксида — пустотами на месте атома кислорода. 

Ученые смогли управлять тем, какие дефекты заряжаются, а какие нет. Обозначив заряженный дефект как «единицу», а незаряженный — как «ноль», они превратили кристалл в устройство хранения данных с хорошей плотностью записи информации.