Костная ткань — это биологический материал, из которого образованы кости человека. Ее сложная пористая структура, состоящая из микроскопических балок-трабекул, идеально приспособлена для ежедневных нагрузок и служит поддерживающей средой для клеток и кровеносных сосудов. Однако при серьезных травмах и заболеваниях кость не всегда может восстановиться сама. В таких случаях требуется замена поврежденного участка.
Проблема в том, что создать искусственный аналог костной ткани достаточно сложно. Идеальный имплантат, или «скаффолд» (искусственный каркас для восстановления тканей), должен выполнять две ключевые задачи: во-первых, быть механически прочным, чтобы выдерживать нагрузку как натуральная кость, а во-вторых, иметь правильную пористую структуру, чтобы в него могли прорастать клетки и сосуды, постепенно превращая искусственный каркас в живую ткань.
Однако существующие технологии проектирования скаффолдов не всегда позволяют одновременно удовлетворить оба требования. Для создания костных аналогов сегодня применяют разные подходы. Традиционно инженеры создают конструкции с простой геометрией пор. Существуют и более продвинутые программы для 3D-моделирования, которые позволяют генерировать сложные решетчатые структуры. Однако эти методы имеют недостатки: одни позволяют создать прочную конструкцию, но не обеспечивают оптимальных условий для прорастания клеток и сосудов; другие хорошо имитируют биологические процессы, но не выдерживают механические нагрузки в организме.
Все это создает ключевое ограничение таких подходов — они не способны одновременно воспроизвести уникальную анатомию кости конкретного пациента и обеспечить идеальное сочетание прочности и биосовместимости. В результате искусственные конструкции часто плохо приживаются или не полностью выполняют свои функции, что требует повторных операций и продлевает сроки реабилитации пациентов.
Ученые Пермского Политеха предложили инновационное решение этой проблемы. Они разработали «цифровой конструктор» для создания искусственных костей. Результаты исследований опубликованы в International Journal of Solids and Structures. Исследование выполнено в рамках государственного задания Министерства науки и высшего образования.
Это специальная компьютерная программа, с помощью которой специалисты могут создавать 3D-объекты имплантатов, используя сложные математические модели. На их основе спроектировали и сравнили различные типы структур: гироидные, алмазные и примитивные, наиболее точно повторяющие архитектуру натуральной кости. Ключевая особенность технологии — возможность легко настраивать свойства конструкции под анатомические и биомеханические особенности каждого пациента. Такой подход позволяет создавать искусственные кости, которые организм воспринимает как собственные.
— Ключевая проблема традиционных скаффолдов — их упрощенная внутренняя архитектура. Они не повторяют сложную пористую структуру натуральной кости, что приводит к двум серьезным осложнениям: недостаточному приживлению с окружающими тканями и возникновению «эффекта стресс-экранирования», когда имплантат берет на себя всю нагрузку, а соседние костные участки постепенно атрофируются, — рассказала Наталия Еленская, старший научный сотрудник научно-исследовательской лаборатории «Механика биосовместимых материалов и устройств» ПНИПУ, кандидат физико-математических наук.
Новая технология решает эти проблемы, точно воспроизводя природную структуру кости. Для этого программа анализирует данные компьютерной томографии пациента — определяет среднюю толщину костных перегородок и общую пористость. Например, в исследовании ученые использовали эталонную модель большеберцовой кости, где эти параметры составили 0,53 миллиметра и 55,2%. Алгоритм автоматически подбирал геометрию «виртуальных кубиков», чтобы их характеристики совпали с эталонными, создавая идеальную биомеханическую копию.
— Наш подход позволяет регулировать ключевые параметры имплантата: размер и форму пор, толщину внутренних перегородок, общую плотность структуры. Это обеспечивает оптимальные условия для прорастания кровеносных сосудов и костных клеток, а также правильное распределение механической нагрузки, — объяснил Михаил Ташкинов, заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ, кандидат физико-математических наук.
Ученые также проверили скаффолд в виртуальной среде. Они проанализировали, как разные модели будут вести себя под давлением и скручивающими нагрузками, чтобы найти самый прочный и надежный вариант.
— С помощью компьютерного моделирования мы определили оптимальные параметры микроархитектуры имплантата — форму и размер внутренних пор и перегородок, — которые обеспечивают не только механическую прочность, сравнимую с натуральной костью, но и создают подходящие условия для регенерации тканей, — добавил Михаил Ташкинов.
Полученные результаты создают основу для применения разработки для лечения сложных переломов, восстановления костных дефектов после удаления опухолей или травм, а также в челюстно-лицевой хирургии и стоматологии при наращивании костной ткани.
Разработка прошла этап компьютерного моделирования и готова к проведению доклинических испытаний. Использование доступных промышленных компонентов и проверенных методов 3D-печати делает технологию экономически целесообразной для внедрения в медицинских учреждениях различного уровня. В перспективе это может кардинально изменить подход к лечению костных травм и заболеваний во всем мире.
