Ученые из МФТИ и Объединенного института высоких температур РАН промоделировали двухфазное течение в пористых средах с использованием неоднородной сетевой модели. Их исследование поможет более эффективно добывать углеводороды и исследовать подземные пласты.
Работа опубликована в журнале «Компьютерные исследования и моделирование». Моделирование двухфазного течения в пористых средах — задача критически важная для нефтедобычи, гидрологии и многих других областей.
Движение двух (или более) жидкостей в пористой среде (например, нефти и воды в пласте) описывается законом Дарси, который является основой большинства моделей фильтрации. Однако закон Дарси справедлив только для равновесных систем, когда перераспределение жидкостей в порах и капиллярах происходит достаточно медленно. В реальности же, особенно в геологических средах со сложной структурой, быстрые изменения насыщенности и значительное время релаксации приводят к неравновесным процессам, которые закон Дарси не описывает.
Существующие модели неравновесной фильтрации, учитывающие зависимость проницаемости от скорости изменения насыщенности, довольно сложны и требуют значительных вычислительных ресурсов. Кроме того, параметры этих моделей трудно определить экспериментально.
Российские ученые разработали новый подход, позволяющий значительно повысить точность и эффективность такого моделирования. Авторы предлагают новую модель, основанную на сетевом представлении пористой среды. Эта модель представляет собой двумерную сеть, где узлы соответствуют порам, а ребра — капиллярам различного радиуса.
Такой подход позволяет учитывать неоднородности, капиллярные силы и использует новый алгоритм, определяющий распределение жидкостей в узлах сети. Этот алгоритм учитывает минимизацию поверхностной энергии, что приводит к более реалистичному распределению фаз в пористой среде.
В модели исследователей каждый капилляр может иметь свой радиус, что позволяет моделировать неоднородность пористой среды на микроуровне. Это значительно повышает реалистичность модели по сравнению с традиционными подходами, которые часто используют усредненные характеристики. В модели учитываются капиллярные силы, обусловленные поверхностным натяжением на границе раздела фаз. Это особенно важно в условиях низкой проницаемости.
Исследование проводилось путем численного моделирования двух тестовых задач. В первой задаче моделировалась пропитка области с низкой проницаемостью (внутренняя), окруженной областью с высокой проницаемостью. Это позволило исследовать зависимость насыщенности от времени и капиллярного давления.
Во второй задаче моделировалось вытеснение несмачивающей жидкости смачивающей при различных значениях коэффициента поверхностного натяжения. Это позволило проанализировать влияние капиллярных сил на распределение жидкостей в неоднородной среде.
В расчетах использовались безразмерные параметры, что позволяет полученные результаты обобщать на широкий диапазон условий.
Результаты моделирования показали качественное соответствие экспериментальным данным. А именно зависимость капиллярного давления от насыщенности, полученная в модели, согласуется с экспериментальными наблюдениями. В задаче вытеснения было показано, что при низких значениях коэффициента поверхностного натяжения смачивающая жидкость предпочитает проникать через более толстые капилляры, а при высоких — через более тонкие. Кроме того, модель точно воспроизводит неравновесные эффекты при двухфазном течении.
«Разработанная модель представляет собой мощный инструмент для проверки упрощенных моделей неравновесной фильтрации, исследования влияния различных геологических факторов на двухфазное течение и оптимизации технологических процессов в нефтедобыче и других областях. Работа открывает путь к созданию более точных и универсальных моделей неравновесной фильтрации с учетом сложной геометрии пористых сред в трехмерном пространстве», — рассказали Андрей Конюхов, сотрудник кафедры прикладной механики МФТИ, и Олег Извеков, старший научный сотрудник кафедры прикладной механики МФТИ.
«Вся модель была разработана на C++ 17, что позволяет нам достичь очень высокой скорости и точности вычислений. Искренняя благодарность МФТИ за поддержку нас троих», — рассказал Кафи Шаббир, программист модели, студент 6-го курса кафедры прикладной механики МФТИ.
Данная модель может найти широкое применение в нефтегазовой промышленности для прогнозирования нефтеотдачи пластов и проектирования добычи углеводородов; в гидрологии — для моделирования подземных вод и прогнозирования загрязнения водоносных горизонтов; в геохимии — для моделирования миграции флюидов в геологических средах.
Работа выполнялась при поддержке РНФ.