Марс — точка притяжения ученых умов, объект мечтаний писателей, кинематографистов и обычных людей. Математик первой категории кафедры математического моделирования систем и процессов, преподаватель Политехнической школы ПНИПУ Евгений Бурмистров рассказал, чем опасны межпланетные путешествия, какую выгоду человечество извлечет из колонизации Красной планеты, возможно ли воссоздать атмосферу на Марсе и как вернуться обратно на Землю.
Марс представляет собой не просто каменистую планету, а потенциальный новый дом для человечества. Стремление к колонизации — это своего рода высвобождение фантазии и мечтаний о космической обители.
«Путешествие к Марсу — вызов смелости и выражение стремления человека к неизведанным горизонтам, напоминание о том, что в нас живет врожденное желание исследовать и открывать новые миры. Мы не оставляем попытки отыскать следы жизнедеятельности древних организмов или даже сами живые организмы в толщах грунта и полярных шапок Красной планеты», — рассуждает Евгений Бурмистров.
Расширение наших знаний об истории Марса прольет свет на эволюцию планетарных систем и даже подтвердит или опровергнет гипотезы о возможности жизни во Вселенной. Колонизация этой планеты требует разработки и применения передовых технологий в области космических полетов, систем поддержки жизни и ресурсного обеспечения. Эти технологии, разработанные для выживания на Марсе, найдут применение и на Земле. В теории, это поможет в создании космической инфраструктуры, что сделает межпланетные полеты более доступными.
Открытие ресурсов на Марсе, таких как минералы и вода, подарит людям новые экономические возможности, в том числе добычу и использование полезных ископаемых для транспортировки на Землю. Заселение Красной планеты – это шанс расширить обитаемое пространство человечества и важный фактор для нашего выживания в случае катастроф на Земле.
По подсчетам специалистов, полет от Земли до Марса займет 8-9 месяцев. За это время человек столкнется с рядом испытаний. Во-первых, космическая среда подвергает астронавтов воздействию высоких уровней радиации, что повлияет на их здоровье, есть риск развития рака. Особенно велика вероятность получить опасную дозу облучения из-за солнечных вспышек, когда радиоактивные частицы выбрасываются за пределы атмосферы звезды. А еще из-за космических лучей, которые представлены элементарными частицами, фотонами и ядрами атомов, движущимися с высокими энергиями в космическом пространстве.
Преподаватель ПНИПУ Евгений Бурмистров объясняет, что солнечная радиация представляет опасность и для астронавтов на МКС, однако современные технологии ограждают их от пагубного воздействия излучения. Космические агентства разрабатывают специальные защитные системы, такие как толстые слои материалов, чтобы снизить воздействие радиации. В таких щитах могут использовать воду, полиэтилен и другие материалы, которые замедляют частицы. Время старта космических миссий планируется таким образом, чтобы минимизировать воздействие солнечных вспышек. Астронавты находятся под постоянным медицинским мониторингом во время полетов, чтобы выявлять и лечить любые негативные эффекты радиации. Для межпланетных путешествий маршруты возможно прокладывать так, чтобы использовать планеты и их магнитные поля для защиты от облучения.
Длительное нахождение в невесомости тоже приведет к потере костной массы и мышечной атрофии. Не стоит забывать и про воздействие длительных полетов на психику человека. Социальная и психологическая изоляция экипажа скажется на эмоциональном благополучии, а ограниченность ресурсов и пространства создаст напряжение и стресс.
Атмосфера Марса (в сравнении с земной) крайне разрежена: количество газовых молекул значительно ниже привычной нам нормы. Главными ее составляющими являются углекислый газ (около 95 процентов), азот (три процента), аргон (1,5 процента), а также остатки других газов и водяного пара.
Чем объясняется такое состояние атмосферы? Во-первых, Марс имеет меньшую массу и гравитацию по сравнению с Землей. Газы уходят в космическое пространство. Во-вторых, на Красной планете нет магнитного поля, которое бы защищало атмосферу от солнечного ветра. В-третьих, интенсивные климатические изменения на Марсе, включая ветра, пыльные бури и периоды обильных ледяных осадков, влияют на атмосферные условия и приводят к ее потере.
Какие трудности это влечет для колонизации? Разреженная атмосфера Марса неэффективно защищает от солнечной радиации. Кроме того, она осложняет маневры и аэродинамическое торможение космических аппаратов при входе в атмосферу. Ограниченны также ресурсы для производства кислорода из-за низкого процента азота в атмосфере Марса.
Атмосфера планеты формируется по-разному — все зависит от изначальных условий и научных теорий. Одна из них представляет этот процесс тремя этапами. Сперва, при формировании планеты из протопланетарного диска вокруг молодой звезды, газы и пыль начинают скапливаться под воздействием гравитационных сил. Затем на поверхности сформировавшейся планеты газы и легкие элементы образуют облако, которое служит зачатком первичной атмосферы. После этого из вулканов, комет и метеоритов на планету поступают дополнительные газы, которые обогащают состав атмосферы.
Чтобы воссоздать этот процесс «вручную», необходимо решить проблему малой гравитации Марса и отсутствия магнитосферы, чтобы важные элементы (гелий и водород) не покидали атмосферы. Необходимо обработать поверхность планеты и увеличить ее способность удерживать тепло. Создание парникового эффекта и приемлемого климата можно достичь с помощью введения в атмосферу Марса дополнительных газов. Все эти подходы объединяет терраформирование — процесс преобразования атмосферы, климата, поверхности и других характеристик планеты или спутника, чтобы сделать их более подходящими для жизни, аналогичными Земле.
К аспектам терраформирования еще относят работы по изменению грунта, водных резервуаров и других поверхностных особенностей для создания подходящей почвы, водоемов и климата. Марс считается наиболее подходящей для этих преобразований планетой, поскольку, согласно исследованиям, в прошлом на Марсе была вода в виде океанов, рек и ледяных капель, остаточная атмосфера послужит основой для сотворения новой, а близкое расположение к Солнцу и наличие дня и ночи облегчит создание необходимых климатических условий.
«Терраформирование Марса — это огромный технический, научный вызов и процесс, потребующий значительных усилий и ресурсов. Большинство других планет в Солнечной системе слишком горячи или слишком холодны, или не обладают ресурсами, необходимыми для поддержания жизни», — считает Евгений Бурмистров.
Чтобы колония могла успешно проживать на Марсе, необходимо решить ряд сложившихся проблем. Прежде всего, обеспечить людей технологиями защиты от космической радиации, кислородом, водой, полезными ресурсами, энергией и системами поддержки жизни и медицинской помощи. Наладить такие процессы сразу невозможно, поэтому человеку придется лететь на Землю за новым оборудованием и запасами.
Возвращение с Марса – сложная задача. Во-первых, из-за ограниченного объема топлива придется производить его прямо на Красной планете. Для этого можно использовать кислород и водород, полученные искусственно, например, из воды. На переработку сырья потребуется потратить много энергии, полученной с помощью альтернативных источников — солнечных панелей.
«Солнечная энергия в космосе становится менее эффективной с увеличением расстояния от Солнца. Соответственно, на Марсе солнечные панели будут собирать меньше энергии, чем на Земле», – отмечает преподаватель Пермского Политеха Евгений Бурмистров.
Для добычи ресурсов на Красной планете, таких как вода из ледяных резервуаров, необходимы специальные буровые системы. Астронавтов следует обеспечить защитным снаряжением, системами связи и продовольствием.
Марс становится ареной для испытаний нашего технологического мастерства. Развитие космических технологий и систем поддержки жизни на другой планете — это вызов, который подстегивает инженеров и ученых на преодоление технологических барьеров.
Комментарии
"Разреженная атмосфера Марса... осложняет маневры и аэродинамическое торможение космических аппаратов при входе в атмосферу."
Понравился перл.) интересно, как атмосфера Марса осложняет аэродинамическое торможение аппаратов при входе в неё. А не было бы марсианской атмосферы — тогда аэродинамическое торможение не осложнялось бы? )) до полного его отсутствия...
"чтобы важные элементы (гелий и водород) не покидали атмосферы."Хотелось бы узнать, в чем такая важность гелия и водорода для марсианской атмосферы. Их там следовые количества, как и на Земле. А в чем их важность, не могу понять. А автор, как понимаю, комменты здесь не оставляет. Эх...
Николай Цыгикало, +++
а как же экономические возможности добычи полезных ископаемых на Марсе для отправке их на Землю?
Так-то, можно всякие модели экономические представить, но думается мне, что экономика добычи ресурсов на Марсе для Земли лежит немного после превращения Сахары в Шри-Ланку.
Shelove517, тут могут быть неочевидные варианты. Просто вырастить картошку и лук, и привезти на Землю. Миллион китайцев заплатит по миллиону за ужин марсианской картошкой. А если сказать что целебный, то это даст побольше полезных ископаемых.
Николай Цыгикало, вот да, эксклюзивность марсианского производства эксплуатировать безусловно можно. Но только в качестве товаров потребления. Сырьё марсианское, наверно, будет невозможно реализовать. Это так у нас с другом мечта есть на старости лет отправиться на Марс и организовать там производство марсианского виски)))
Если на на нашей планете будет катастрофа, Марс возможно будет служить как временное убежище для небольшой группы людей и не более того. И все они найдут там свою погибель в муках. Но тем не менее изучать Марс необходимо для лучшего понимания Мироздания. Нам необходимо изобретать и создавать совершенно другие космические корабли, способные быстро и безопасно выйти за пределы Солнечной системы, найти планеты с схожими условиями с нашей планетой и только тогда можно будет думать о переселении людей туда для продолжения человеческого рода во Вселенной. Для этого ещё необходимо развивать технологию ИИ, создавать роботы с ИИ, мыслящих как люди, чтобы они с применением генной инженерии (путем клонирования или же другими способами) на основе генетических материалов людей смогли возродить там человечество. Так как, если даже в будущем мы найдем способы продление жизни человека, но всё же ни один космонавт, даже очень продленной жизнью, в течение своей жизни не сможет живым долететь до других планет , которые расположены за пределами солнечной системы.
Вообще статья об очевидных вещах: лететь до Марса долго, солнечного света там меньше и т.д. Не нужно иметь математическое образование, чтобы рассуждать на эти темы.