Ученые РХТУ имени Д. И. Менделеева разработали метод, позволяющий повысить износостойкость супергидрофобных покрытий за счет предварительного анодного окисления металла основы.
Коррозия конструкции Шуховской башни в Москве / © Shukhov Tower, Maxim Fedorov
Проблема коррозии металла на протяжении всей истории металлообработки остается одной из основных, вследствие чего вопрос о защите металла от коррозионного разрушения остается актуальной научно-технической задачей. Одним из перспективных методов защиты металла от коррозии является нанесение так называемых супергидрофобных покрытий.
Супергидрофобные материалы и покрытия представляют большой практический интерес, поскольку обладают рядом уникальных функциональных характеристик. Наиболее важные из них — водонепроницаемость, устойчивость к биообрастанию, к неорганическим, а в ряде случаев и к органическим загрязнениям, устойчивость к коррозии, обеспечение скольжения жидкого потока вблизи гидрофобной поверхности, управляемые электроизоляционные свойства.
Такие покрытия способны защищать от коррозии металлы и сплавы, а также снижать гидродинамическое трение жидкого потока. Супергидрофобные поверхности проявляют так называемый «эффект лотоса»: при контакте с ними капля воды принимает форму, близкую к шарообразной, и даже при небольшом наклоне поверхности по отношению к горизонту капля с нее скатывается, захватывая при движении загрязнения.
Основным недостатком супергидрофобных покрытий считается их низкая износостойкость при механическом воздействии. В РХТУ имени Д. И. Менделеева разработали метод, позволяющий повысить износостойкость супергидрофобных покрытий за счет предварительного анодного окисления металла основы.
Формирование супергидрофобной поверхности реализуется в два этапа: на первом этапе анодным окислением в растворе кислот на поверхности металла создается шероховатый слой, который на втором этапе модифицируется за счет адсорбции на нем органических веществ с низкой поверхностной энергией. В частности, авторы использовали смесь диметилсульфоксида (ДМСО) и стеариновой кислоты, позволившая получить супергидрофобную поверхность за 10 минут при температуре всего 30 °C.
Основной целью исследования стало изучение влияния анодного окисления на свойства супергидрофобных покрытий. Авторами было установлено, что при проведении процесса в растворе серной и фосфорной кислот на поверхности металла формируется тонкая оксидная пленка с развитым микрорельефом поверхности. При напряжении в ванне с электролитом 12 вольт процесс занимает 20 минут и проводится при комнатной температуре (25 °C).
Такая предварительная обработка позволяет значительно улучшить адгезию (сцепление) металла с модифицирующими органическими веществами (ДМСО и стеариновой кислотой), что значительно повышает износостойкость супергидрофобного покрытия. Износостойкость покрытия оценивали воздействием на него калиброванного песка в орбитальном шейкере.
Супергидрофобные покрытия, полученные на поверхности алюминия по старой технологии (технологии с предварительной стадией травления) теряет супергидрофобность уже через 15 мин испытаний, супергидрофобные покрытия, сформированные на предварительно анодированном алюминии, сохраняют супергидрофобные свойства и спустя 20 часов испытаний.
Через 22 часа испытаний покрытие перестает быть супергидрофобным, но, следует отметить, что даже покрытие полностью не истирается. В свою очередь испытание на коррозию показало, что при воздействии соляным туманом (пятипроцентный водный раствор хлористого натрия), анодированные образцы выдерживают 830 часов без проявлений коррозии, в то время как чистый сплав в аналогичных условиях начинает корродировать спустя 22 часа.
Комментарии
Крутяк!