Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Atmospheric Research.
Молния представляет собой сложную систему проводящих каналов, структура и особенности развития которых до сих пор далеки от полного понимания. Молнии принципиально отличаются от лабораторных лидеров — горячих хорошо проводящих плазменных каналов, которые обязательно несут какой-то один заряд — положительный или отрицательный. Разветвленная сеть молнии способна поддерживать нулевой суммарный заряд благодаря постоянному перераспределению положительных и отрицательных зарядов.
Так, в случае доходящих до земли молниевых разрядов отрицательные заряды обычно концентрируются в нижней части канала молнии, направленной к земле, тогда как положительный «полюс» находится в облаке. Между этими зонами находится нейтральная точка или точка реверса — область, где происходит смена положительного заряда на отрицательный или наоборот. Смещение точки реверса в процессе развития молнии меняет распределение электрического потенциала вдоль канала и, как было показано, запускает появление так называемых транзиентов (скоротечных лидерных процессов) молнии.
Наиболее ярким и хорошо изученным примером таких переходных процессов, которые связаны с реактивацией ранее затухших ветвей молнии, являются лидеры отдачи. Они представляют собой биполярные лидерные каналы, возникающие вблизи головки ранее затухшего положительного лидера молнии. Отрицательная часть лидера отдачи прорастает вдоль затухшей ветви к основному (активному) каналу и, если доходит до него, запускает волну оптического света и всплеск тока. После реактивации канал продолжает развиваться как боковая ветвь положительного лидера молнии.
Ученые из Института прикладной физики имени А.В. Гапонова-Грехова РАН (Нижний Новгород) разработали численную модель, которая описывает рост, затухание (охлаждение на этапе нулевого тока) и повторную активацию бокового молниевого канала, в результате которой возникают лидеры отдачи. Основное преимущество представленной модели заключается в том, что она описывает одновременное и самосогласованное изменение термодинамических и электрических параметров молниевого канала.
На начальной стадии роста, продолжающейся примерно 20 миллисекунд, рост канала поддерживается высоким напряжением точки ветвления (стартовой точки бокового канала). Когда это напряжение падает и становится недостаточным для обеспечения роста канала, наступает фаза затухания длительностью 5–75 миллисекунд, когда ток прекращается, а плазма — ионизированный газ — внутри канала постепенно остывает. На заключительном этапе в боковом канале молнии происходит реактивация — возникает резкий рост напряжения в точке ветвления. Он приводит к возникновению волны повторной ионизации, то есть к формированию лидера отдачи, который реактивирует ранее обесточенный канал.
Физики исследовали условия, при которых возможна реактивация обесточенного канала молнии. Оказалось, что лидер отдачи может возникнуть только в том случае, если пауза между электрическими разрядами, протекающими через канал, длится от одного до нескольких десятков миллисекунд, а температура канала не опускается ниже примерно 3500°С. Исследование также показало, что ключевую роль в этом процессе играет смещение точки реверса, которое отвечает за рост потенциала в боковом канале молнии, приводя к его реактивации.
Теоретические предсказания модели подтверждаются экспериментальными данными. Так, расчетные временные интервалы между разрядами в 15–30 миллисекунд, необходимые для реактивации, хорошо согласуются с результатами наблюдений реальных молний. Модель также успешно объясняет положение точки старта лидеров отдачи, зафиксированное в экспериментальных исследованиях.
«В связи с растущим использованием микроэлектроники и тенденцией к цифровизации всех сфер нашей жизни грозовые воздействия становятся все более экономически и социально опасными. Ущерб, причиняемый молниями, трудно переоценить, и, скорее всего, он будет увеличиваться в будущем из-за глобального потепления и аэрозольного загрязнения атмосферы. Результаты, полученные нами в рамках проекта, уникальны и в настоящее время не имеют мировых аналогов, что позволяет нам рассчитывать на достижение прорывных результатов в области физики молнии и развитии методов молниезащиты.
В дальнейшем мы планируем усовершенствовать нашу модель и описать серию лидеров отдачи, проходящих по одному каналу, последний из которых доходит до земли, становясь стреловидным лидером. Стреловидные лидеры крайне опасны для слаботочной электроники благодаря чрезвычайно высоким скоростям роста и относительно большим токам, а потому заслуживают дальнейших исследований», — рассказывает руководитель проекта, поддержанного грантом РНФ, Дмитрий Иудин, доктор физико-математических наук, ведущий научный сотрудник лаборатории атмосферного электричества Института прикладной физики имени А.В. Гапонова-Грехова РАН.