Ученые из Сколтеха и Университета Вупперталя в Германии определили, что ранее разработанный ими полностью оптический универсальный логический вентиль может работать на скорости в 240 гигагерц при комнатной температуре.
На схеме изображен органический микрорезонатор, функционирующий как логический элемент, где выходной сигнал зависит от синхронизации входных импульсов и от того, было ли исчерпано предыдущее состояние / © Михаил Миско и др., Physical Review B
В статье, опубликованной в журнале Physical Review B, авторы также изучили, что ограничивает время между последовательными поляритонными конденсациями, рассмотрев эффект бимолекулярного гашения, который вносит основной вклад в ограничение скорости работы транзисторов.
Исследование поддержано грантом РНФ. В Лаборатории гибридной фотоники Сколтеха, которой руководит старший вице-президент по фундаментальным исследованиям Сколтеха Павлос Лагудакис, заслуженный профессор и лауреат научной премии «Вызов», продолжают изучать, как ускорить вычисления и компьютеры с помощью оптики. Чтобы выполнять больше задач, компьютерам нужны быстрые процессоры, но полупроводниковая электроника с этой задачей не справляется — от высоких тактовых частот она очень быстро нагревается. Альтернативной ей могут стать оптические системы, которые могут работать в тысячу раз быстрее, чем электронные.
В своем раннем исследовании ученые создали универсальный логический элемент NOR (от англ. NOT — оператор отрицания и OR — оператор логической суммы «или»). Он разработан на основе поляритонных конденсатов, функционирует при комнатной температуре, имеет множественные входы, может работать в сотни раз быстрее электронных аналогов, а также является полностью оптическим — то есть работает без участия электрического тока. Такие логические элементы можно воспроизводить и соединять в цепи.
Скорость работы поляритонных транзисторов определяется тем, насколько быстро могут выполняться последовательные логические операции. Для этого требуется достаточное количество поляритонов, оставшихся от предыдущего состояния «1», чтобы обеспечить четкое различие между логическими состояниями «1» и «0». По мере увеличения рабочей частоты остаточные поляритоны от первого импульса могут непреднамеренно усиливать второй импульс, создавая, таким образом, паразитное усиление при некоторой ненулевой временной задержке между последовательностями импульсов.
«В нашей новой работе мы определили, с какой скоростью может работать наш логический вентиль — это 240 ГГц. Мы также описали эффект биомолекулярного гашения, который важно учитывать при расчетах, поскольку он ограничивает максимальную тактовую частоту поляритонного устройства — делокализация поляритонов приводит к дополнительным потерям», — поделился первый автор исследования, аспирант программы «Физика» в Сколтехе Михаил Миско.
Авторы пришли к выводу, что их наблюдения согласуются с теоретическими предсказаниями. Исследователи предложили модель, которая учитывает k-зависимые потери, чтобы успешно сопоставить экспериментальные данные из различных испытаний. В исследовании подчеркивается, что для достижения оптимальной производительности длительность импульсов накачки должна быть короче, чем характерное время соответствующих процессов, чтобы эффективно управлять поляритонной динамикой и расширять функциональные возможности оптических логических устройств.
Результаты исследования стали еще одним важным этапом на пути к созданию оптических компьютеров, которые смогут работать в сотни раз быстрее традиционных компьютеров.