Site icon Naked Science

Пермские ученые создали материал для регенерации костной ткани

Скелет руки / © DC Studio, freepik

Ежегодно миллионы людей обращаются в больницы с проблемой, которую организм решить не в силах: восстановить утраченный фрагмент кости. Так, более 500 миллионов человек страдают от остеопороза — системного заболевания, делающего кости хрупкими, что ежегодно приводит к 37 миллионам переломов среди людей старше 55 лет (это 70 травм в минуту). К волне возрастных переломов добавляются сложные повреждения в результате аварий, спортивных травм и операций по удалению опухолей.

Для лечения таких обширных повреждений, когда кость не может срастись сама, хирурги используют специальные материалы в качестве временного каркаса. Долгое время «золотым стандартом» для этого были имплантаты на основе фосфатов кальция. Однако они рассасываются в организме крайне медленно: процесс может занимать годы, за это время материал рискует не помочь, а механически помешать росту новой кости. Кроме того, даже постепенно разрушаясь, он остается биологически пассивным. Высвобождающимся ионам кальция для включения в новую костную ткань требуется долгая и сложная переработка организмом. Классический материал выполняет лишь роль механической опоры, но не активного участника заживления.

Альтернатива — фосфаты магния. Они растворяются с оптимальной скоростью, вовремя освобождают место для новой ткани. Ионы магния остаются в зоне повреждения и запускают процесс заживления, дают организму сигнал усиленно строить новую кость и сосуды в нужном месте.

В пористую структуру такого материала можно «встроить» антибактериальный компонент для борьбы с инфекцией или специальное вещество, ускоряющее восстановление. Растворяясь с заданной скоростью, имплантат будет месяцами высвобождать лекарство в зону перелома или операционной раны. Это позволит точечно лечить, резко повысит эффективность терапии и поможет избежать побочных эффектов от обычных таблеток или уколов.

Несмотря на многообещающие свойства магниевых соединений для восстановления костей, в России такие имплантаты пока не производят. Это новое направление, поэтому технологии изготовления таких материалов сейчас только начинают активно исследоваться.

Ученые Пермского Политеха впервые в России разработали методику получения этого высокопористого материала для костных имплантов. Для этого они особым способом синтезировали струвит. Статья опубликована в журнале «Химическая безопасность». Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет-2030».

Это минерал, выглядящий как бесцветные, белые или желтоватые стекловидные кристаллы, часто в форме прямоугольных призм с скошенными гранями. Образуется в щелочной среде при наличии ионов магния, фосфора и соединений азота. В природе его можно найти там, где происходит разложение органики, например, в остатках растений или животных, а также в продуктах их естественного распада.

Специалисты выбрали именно это соединение, так как в нем уже содержатся необходимые для кости магний и фосфор, а также вода и аммиак. При нагревании вода и аммиак испарятся наружу, оставив множество пустот внутри. Так получается не просто порошок, а высокопористый материал на основе фосфата магния — это готовая основа для будущего имплантата.

Образец пористого фосфата магния, полученного из струвита / © Пресс-служба ПНИПУ

Но далеко не каждый струвит способен на такую трансформацию. Обычно его создают плотным, поэтому получается материал, который нельзя использовать в качестве биосовместимого имплантата, так как для этих целей нужен активный пористый каркас, в который смогут прорастать клетки и сосуды.

Поэтому исследователи сравнили традиционный и разработанный уникальный способ синтеза. Термически обработали оба варианта. Оказалось, что высокопористый материал, пригодный для использования именно в медицинских целях, получается только из струвита, синтезированного по уникальной методике пермских ученых.

Образцы традиционного и модифицированного струвита до термической обработки (слева) и после термической обработки (справа) при 90 °С в течение 2 часов 40 минут / © Е. О. Гладких, Химическая безопасность

Его внутренняя поверхность составляет 266 квадратных метров на грамм — это значит, что если мысленно развернуть все внутренние стенки пор всего одного грамма этого порошка, они покроют площадь, равную теннисному корту. При этом материал очень «вместительный»: объем его пор достигает 0,343 кубического сантиметра на грамм, а сами поры невероятно малы — их радиус всего 2,6 нанометра. Такое сочетание огромной площади, большого объема и сверхмалых пор открывает сразу два важнейших применения в медицине.

— Во-первых, большая площадь поверхности станет идеальным каркасом для клеток. Это даст им в тысячи раз больше точек для закрепления и значительно ускорит срастание имплантата с костью пациента. Во-вторых, развитая пористая структура позволит использовать материал как умный контейнер. Его можно заранее заполнить анибактериальным препаратом для долгосрочной защиты от инфекции или фактором роста для стимуляции заживления. Растворяясь в организме, такой имплантат будет месяцами высвобождать лекарство прямо в зону перелома. Это поможет избавиться от побочных эффектов обычных таблеток или уколов, — отмечает Ирина Пермякова, доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат технических наук.

Исследование ученых Пермского Политеха открывает путь к созданию в России нового поколения «умных» медицинских имплантатов. Разработанная технология позволяет получать высокопористый материал на основе фосфатов магния с огромной внутренней поверхностью.

Он сможет одновременно служить биосовместимым каркасом для интеграции с костью и резервуаром для продолжительной доставки лекарств. Это позволит будущим имплантатам не просто замещать утраченную ткань, а активно управлять восстановлением. Такой подход значительно повысит эффективность лечения сложных переломов, остеопороза и последствий хирургических вмешательств.

Exit mobile version