Site icon Naked Science

Кристаллы перовскита помогут создать оптические компьютеры

Ученые исследовали поведение света в микрорезонаторе с анизотропным кристаллом перовскита. Теория предсказала расщепление световых мод и их асимметричное взаимодействие, что подтвердилось в эксперименте: на спектрах четко видны «анти-пересечения» — признак сильного спин-орбитального взаимодействия фотонов. Компьютерное моделирование, основанное на новой теоретической модели, точно воспроизвело экспериментальные данные и позволило определить ориентацию кристалла в пространстве (углы Эйлера 15°, 27°, 5°), объяснив наблюдаемые эффекты / © Emmanouil G. Mavrotsoupakis et al., Light: Science & Applications

Статья об открытии опубликована в журнале Light: Science & Applications. В мире электроники ученые давно научились управлять потоком электронов с помощью магнитных полей, используя не только их заряд, но и собственное вращение — спин. Физики давно мечтали достичь подобного контроля и над частицами света, фотонами, чтобы создать сверхбыстрые и энергоэффективные оптические компьютеры. Однако главная трудность заключается в том, что фотоны не имеют электрического заряда и почти не взаимодействуют с обычными магнитными полями.

Решение этой задачи лежит в плоскости создания «синтетических» магнитных полей — особых условий в материале, которые заставляют фотоны вести себя так, будто на них действует настоящее магнитное поле. В физике твердого тела этот эффект известен как спин-орбитальное взаимодействие, связывающее спин частицы (для фотона его аналогом является поляризация) с ее движением. Это взаимодействие может порождать так называемые топологические состояния — особые, устойчивые к рассеянию конфигурации, защищенные фундаментальными законами физики. Подобно тому, как нельзя развязать узел на веревке, просто ее растягивая, топологическое состояние света не разрушается при столкновении с мелкими дефектами материала. Однако создание таких систем, работающих при комнатной температуре и не требующих сложнейших производственных процессов, оставалось трудноразрешимой задачей.

Именно этот вызов и приняли авторы нового исследования. Их целью было создать простую и эффективную платформу для генерации топологических фотонных состояний. В качестве ключевого компонента они выбрали гибридные двумерные перовскиты — материалы, чья структура напоминает слоеный бутерброд из чередующихся органических и неорганических нанопластин. Эти кристаллы обладают особым свойством — сильной оптической анизотропией, что означает, что свет разных поляризаций движется сквозь них с разной скоростью. Для эксперимента ученые помещали каплю горячего раствора с прекурсорами перовскита между двумя зеркалами, образующими оптический микрорезонатор. По мере остывания раствора внутри резонатора самопроизвольно вырастали тончайшие кристаллы перовскита, свободно ориентируясь в пространстве, что избавило от необходимости в сложной и дорогостоящей нанолитографии.

Когда свет попадает в такой «сэндвич», начинается сложный физический процесс. С одной стороны, сам резонатор расщепляет свет на две поляризации, что уже создает базовое синтетическое поле. С другой — анизотропный кристалл перовскита вносит дополнительное, гораздо более сильное расщепление, зависящее от его ориентации. Сочетание этих двух эффектов порождает сильное спин-орбитальное взаимодействие для фотонов. Это взаимодействие заставляет световые моды с разной поляризацией и разной пространственной структурой «чувствовать» друг друга и гибридизироваться. В результате в энергетическом спектре системы появляются так называемые анти-пересечения — верный признак сильного взаимодействия. Более того, их взаимодействие со светом сильно зависит от ориентации плоскости поляризации. Эта анизотропия, или двулучепреломление, означает, что свет с разной поляризацией «видит» разный показатель преломления, проходя через кристалл.

Алексей Кавокин, директор Международного центра теоретической физики имени А. А. Абрикосова МФТИ, пояснил: «В результате сочетания эффектов оптической анизотропии и спин-орбитального взаимодействия световых мод удалось, в частности, реализовать поляритонные состояния с отрицательной эффективной массой. Такая “антигравитация” квазичастиц в кристаллах может позволить реализовать новую, сверхтвердую, фазу поляритонной свето-материи. Наша работа подготовила почву для новых открытий, которые могут обогатить нас сверхчувствительными оптическими приборами или, например, мантией-невидимкой».

Кульминацией исследования стало открытие и теоретическое описание необычных топологических особенностей. Ученые показали, что созданное ими эффективное магнитное поле имеет сложную структуру. В этом пространстве существуют особые «диаболические точки», где эффективное поле полностью исчезает, а энергетические уровни фотонов соприкасаются. Эти точки являются топологическими сингулярностями. Вокруг них возникает гигантская кривизна Берри — геометрическая характеристика, описывающая «закрученность» квантового состояния. Она действует как источник или сток топологического заряда, создавая своего рода вихрь в поведении света.

Исследователи визуализировали синтетическое магнитное поле, действующее на свет в системе, обнаружив две особые точки, где поле исчезает. Анализ энергетических уровней показал: при прохождении через эти «дьявольские точки» световые моды не взаимодействуют (c), тогда как в других направлениях возникает отталкивание уровней (d). Ключевым доказательством топологической природы эффекта стала кривизна Берри — в особых точках она достигает экстремальных значений (e,f), что подтверждает создание нетривиального топологического состояния (g) / © Emmanouil G. Mavrotsoupakis et al,, Light: Science & Applications

Новизна работы заключается не только в использовании перспективного материала, но и в глубине анализа. В отличие от предыдущих исследований, где использовались пассивные жидкие кристаллы, требующие внешнего управления осями — результат, который напрямую связан с обобщенной теоретической моделью, впервые учитывающей полную трехмерную ориентацию анизотропного кристалла в резонаторе. Присутствие этих точек и связанной с ними ненулевой кривизны Берри — математического объекта, описывающего топологию системы, — доказывает, что ученым удалось в эксперименте создать нетривиальное топологическое состояние света.

Теоретическая модель, подтвержденная экспериментально, показывает поразительный эффект: при движении света в одном направлении энергетические уровни фотонов просто пересекаются, как будто не замечая друг друга. Однако при движении в другом направлении происходит «анти-пересечение»: вместо того чтобы пересечься, уровни изгибаются и «отталкиваются» друг от друга. Это верный признак того, что между ними возникло сильное взаимодействие — тот самый эффект спин-орбитальной связи, создающий для света синтетическое магнитное поле.

Алексей Кавокин добавил: «Открытие асимметричных диаболических точек — это не просто красивый физический эффект. Оно показывает, что мы можем управлять топологией света гораздо более гибко, чем считалось ранее. Фактически, просто находя разные кристаллы на образце с разной ориентацией, мы получаем разные “правила дорожного движения” для фотонов. Это открывает путь к созданию мантии-невидимки, которая заставит свет обтекать защищенный мантией объект».

Новизна исследования также заключается в объединении в одном материале двух ключевых функций. Перовскиты здесь выступают не только как пассивный анизотропный элемент, создающий синтетические поля, но и как активная среда. Они обладают сильными экситонными резонансами — коллективными возбуждениями электронов, которые могут эффективно взаимодействовать со светом, образуя гибридные квазичастицы, поляритоны. Ученые продемонстрировали, что даже в режиме сильной связи света и экситонов топологические эффекты сохраняются, что открывает путь к созданию топологических поляритонных лазеров.

Практическая значимость этой работы огромна. Топологически защищенные состояния света могут стать основой для фотонных интегральных схем, в которых оптический сигнал будет передаваться без потерь, даже если на его пути встречаются дефекты или резкие изгибы волновода. Создание синтетических магнитных полей позволяет конструировать невзаимные устройства, такие как оптические изоляторы и циркуляторы — по сути, «улицы с односторонним движением» для света, которые критически важны для стабильной работы лазеров и в архитектуре квантовых компьютеров. Наконец, вся эта область исследований является фундаментом для спиноптроники — технологии будущего, использующей поляризацию света для кодирования и обработки информации.

В дальнейшем ученые планируют исследовать возможность активного управления ориентацией кристалла. Это возможно, поскольку активный материал — перовскит — сам является источником экситонов и обеспечивает сильную связь света и материи.

Авторы разработали обобщенную теоретическую модель, которая впервые описывает систему с полностью анизотропным кристаллом, имеющим произвольную трехмерную ориентацию. Это позволило точно предсказать и объяснить ключевой результат — асимметричное расположение диаболических точек. Исследование не только предлагает готовую платформу для реализации экзотических состояний света, но и ставит новые вопросы о сложной и красивой взаимосвязи между светом, веществом и топологией.

Exit mobile version