Site icon Naked Science

Химики синтезировали долгоживущие светящиеся нанокристаллы в защитной оболочке

Люминесцентный нетканый материал, нанесенный на жесткую подложку / © Дмитрий Ковшов, Саратовский университет

Во многих современных системах освещения и дисплеях используются светодиоды. Для их эффективной работы и настройки (например, изменения спектра свечения с холодного на теплый) нужны материалы, преобразующие свет. Одни из перспективных соединений для этой задачи — перовскитные квантовые точки. Это нанокристаллы, излучающие очень чистый и яркий свет, спектром которого можно легко управлять. Однако перовскиты очень чувствительны к влаге и кислороду: под их воздействием такие материалы разрушаются и перестают светиться. Чтобы решить эту проблему, ученые пытаются «защитить» квантовые точки с помощью полимерной оболочки.

Исследователи из Саратовского национального исследовательского государственного университета имени Н.ГЧернышевского (Саратов) с коллегами из Санкт-Петербургского национального исследовательского Академического университета имени Ж.И. Алферова РАН (Санкт-Петербург) и Университета ИТМО (Санкт-Петербург) синтезировали стабильные люминесцентные нетканые материалы на основе полимера фторопласта и перовскитных квантовых точек. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Journal of Semiconductors.

Авторы использовали технологию электроформования, которая позволяет одновременно создавать полимерное волокно и синтезировать в нем перовскитные квантовые точки. В качестве основы для материала ученые выбрали стабильный и прочный фторсодержащий полимер фторопласт. В раствор этого вещества добавили бромсодержащие соли цезия и свинца, на основе которых росли перовскитные нанокристаллы.


Приготовление раствора для формования / © Дмитрий Ковшов, Саратовский университет

Полученную смесь поместили в камеру с высоким напряжением, под действием которого полимер приобрел форму тончайших переплетенных нитей. Кроме того, в этих же условиях из солей цезия и свинца сформировались квантовые точки диаметром от четырех до тринадцати нанометров, что в десятки раз меньше размеров вирусов.

С помощью электронного микроскопа авторы убедились, что светоизлучающие кристаллы перовскита равномерно распределились по всему объему волокна. При облучении ультрафиолетом материал испускал зеленый свет, при этом его яркость не уменьшилась даже спустя 2,5 года хранения образцов в лабораторных условиях. Ученые также определили, что, меняя время от приготовления раствора для синтеза до его обработки напряжением, можно управлять размером получаемых квантовых точек и спектром испускаемого ими света (от 507 до 517 нанометров).


Процесс электроформования и получение люминесцентного нетканого материала в ультрафиолетовом свете / © Дмитрий Ковшов, Саратовский университет

«Нам удалось довольно простым способом синтезировать ярко светящиеся квантовые точки в защитной полимерной матрице, а также добиться сохранения их свойств на протяжении нескольких лет. Это будет способствовать практическому применению таких гибридных материалов в реальных устройствах: в гибкой электронике, например, носимых на коже медицинских устройствах, в преобразователях света, используемых в осветительных приборах. В дальнейшем мы планируем расширить свечение наших материалов на весь видимый спектр. Это позволит заложить основы для создания легких гибких дисплеев для умной одежды и аксессуаров», — рассказывает руководитель проекта, поддержанного грантом РНФ, Полина Демина, кандидат химических наук, старший научный сотрудник СГУ имени Н.Г. Чернышевского.

Exit mobile version