Site icon Naked Science

Ученые узнали, как размер группы влияет на ее работу с ИИ

Большие группы студентов эффективнее использовали ИИ в обучении по сравнению с малыми / © Brooke Cagle, unsplash.com

Статья ученых опубликована в журнале Innovations in Education and Teaching International. Групповое обучение — один из самых распространенных и важных методов в высшем образовании. Однако до сих пор не вполне понятно, какие именно факторы делают командную работу эффективной.

Ситуация стала интереснее после появления ИИ, который студенты начали активно использовать в учебе. Эксперты из НИУ ВШЭ Галина Шульгина, Александра Гетман, Илья Гуленков и Джейми Костли выяснили, как особенности групп — размер и уровень знаний участников — влияют на результаты работы, если в процессе задействован ИИ.

В исследовании участвовали 196 студентов второго курса бакалавриата (55% мужчин и 45% женщин), которым предстояло решать задачи в команде в рамках 16-недельного курса макроэкономики. Испытуемых разделили на группы от пяти до восьми человек с разным уровнем знаний и подготовки. Сначала участники решали задачи сами. Затем в течение четырех семинаров группы работали с ChatGPT 3.5. Задачей было не просто получить ответ от нейросети, а критически осмыслить его, применить экономические модели курса и представить комплексное решение.

Ученые оценивали качество полученных решений в соответствии с тем, насколько верными и подробными были ответы студентов. Максимальный балл получали команды, которые не только правильно применяли ИИ, но и указывали на его ограничения, продемонстрировав тем самым высокий уровень понимания материала.

Ученым удалось выявить несколько закономерностей в использовании ИИ группами. Во-первых, лучшие результаты показали команды, участники которых были примерно на одном уровне. А вот группы с сильным разбросом в знаниях справлялись хуже, хотя в педагогике принято считать, что разнообразие знаний внутри команды помогает, а не мешает.

«Для нас стало неожиданным, что чем выше был разброс в оценках студентов, тем менее качественным оказалось итоговое решение. Это может быть связано с тем, что более подготовленные участники, вместо того чтобы концентрироваться на задании, тратили время на объяснения и согласование решения, а менее подготовленные не могли в полной мере использовать возможности ИИ. Более сильные студенты лучше умеют взаимодействовать с ИИ: формулировать запросы, критически оценивать ответы и использовать их в рассуждениях», — объясняет младший научный сотрудник Международной лаборатории проектирования и исследований в онлайн-обучении Института образования НИУ ВШЭ Галина Шульгина.

Во-вторых, данные отчетливо указывали на положительную связь между большим размером группы и лучшими результатами работы с ИИ. Так, команды из 7–8 человек в среднем справлялись с заданиями лучше групп из 5–6 участников. Каждый дополнительный участник группы повышал итоговый балл. Это противоречит распространенному в педагогике мнению о том, что малые группы работают эффективнее больших. Ученые предположили, что крупные команды обладают большим интеллектуальным ресурсом, разнообразием взглядов и навыков, что помогает им продуктивнее взаимодействовать с нейросетями.

«Однако это не означает, что рост эффективности будет продолжаться бесконечно. Можно предположить, что после достижения определенного числа участников группы начнут проявляться негативные эффекты: усложнится координация, возрастет время на согласование и поддержание общего понимания задачи», — указывает младший научный сотрудник Международной лаборатории проектирования и исследований в онлайн-обучении Института образования НИУ ВШЭ Александра Гетман.

Несмотря на то что для окончательных выводов нужны дальнейшие исследования, авторы считают, что для оптимизации использования ИИ в образовании следует подбирать группы студентов с одинаковым уровнем подготовки и объединять их в большие группы. По мнению исследователей, использовать ИИ можно при изучении любых дисциплин.

«Потенциал для внедрения ИИ в групповую работу есть на любых курсах, вне зависимости от области знаний и уровня подготовки. Ключевая задача преподавателя при организации такой работы — заранее сформировать у студентов ожидания о том, как и зачем может быть использован ИИ в их работе на курсе. Если студенты увидят образцы успешного применения, то ИИ может стать дополнительным членом команды в рамках любых дисциплин. Мы наблюдаем за тем, как студенты используют более продвинутые версии моделей (ChatGPT 5, ChatGPT 5 Thinking и так далее) и видим в партнерстве студент — ИИ большой потенциал.

Теперь это касается уже не только стандартизированных простых задач, но и более сложных запросов, требующих глубокого понимания контекста, работы со множеством источников информации, продвинутой аргументации. Роль собственной экспертизы студентов в работе с такими моделями только возрастает: все модели теперь выдают правдоподобные ответы, но их содержание необходимо осмыслять критически», — считает преподаватель факультета экономических наук НИУ ВШЭ Илья Гуленков.

Exit mobile version