Site icon Naked Science

Эйнштейн объяснил фотоэффект, а томские физики нашли ему новое применение — закрученные электроны

Физики ТГУ объяснили, что фотоэффект может стать источником закрученных электронов / © P. O. Kazinski, M. V. Mokrinskiy and V. A. Ryakin, сгенерировано с помощью нейросети

Статья опубликована в журнале Proceedings of the Royal Society A (Q1). Обычный свет можно представить как плоские волны, но закрученные фотоны имеют спиралевидный волновой фронт — словно штопор. Они несут не только энергию и импульс, но и отличный от нуля орбитальный угловой момент — своеобразное вращение вокруг оси распространения. Аналогично, закрученные электроны — это частицы, чьи волновые функции закручены в пространстве, что придает им уникальные квантовые свойства.

Такие электроны перспективны для квантовых вычислений, сверхчувствительной микроскопии и изучения топологических материалов. Однако существующие методы их генерации сложны и требуют специализированных установок. Авторы статьи объяснили, что поверхностный фотоэффект — явление, при котором свет выбивает электроны из кристалла, — может стать простым и эффективным источником закрученных электронов, если использовать закрученные фотоны.

— Мы показали, что при правильных условиях поверхностный фотоэффект может быть надежным источником закрученных электронов, — говорит аспирант физического факультета ТГУ Владислав Рякин. — Это открывает путь к более простым экспериментальным установкам по сравнению с существующими методами.

Ученые ТГУ разработали квантовую теорию поверхностного фотоэффекта для «закрученных» фотонов. Оказалось, что не любой материал подходит для создания источника закрученных электронов. В обычных металлах (например, меди) электроны слишком быстрые (имеют высокий фермиевский импульс), и их орбитальный момент размазывается. Однако в слабо легированных полупроводниках (например, n-InSb) и дираковских полуметаллах при низких температурах (менее 2,5 К для n-InSb и менее 60 К для полуметаллов) угловой момент фотона почти полностью передается фотоэлектрону.

— Интересно, что дираковские полуметаллы, такие как Cd₃As₂ или Na₃Bi, работают при более высоких температурах, чем n-InSb, — добавляет студент физического факультета ТГУ Марк Мокринский. — Возможно, в будущем мы увидим устройства на их основе, генерирующие закрученные электроны при температурах жидкого азота.

Спустя 135 лет после работ Александра Столетова и 120 лет после работы Альберта Эйнштейна фотоэффект продолжает удивлять. Теперь этот, уже классический феномен открывает доступ к современным нанотехнологиям, где закрученные частицы играют ключевую роль.

— Наше исследование предлагает новый способ создания закрученных электронов без сложных установок. Следующий шаг — экспериментальная проверка. Если метод подтвердится, это может привести к прорывам в электронной микроскопии и квантовых технологиях, – резюмирует профессор физического факультета ТГУ Петр Казинский.

Exit mobile version