Нормальный круговорот питательных веществ в океане, как и на суше, представляет собой «конвейер углерода» от фотосинтезирующих организмов к редуцентам. Только в воде процесс идет от поверхности вниз — до самого дна. Но наиболее богаты жизнью две условно разделяемые по глубине зоны океана: эпипелагиальная (0-200 метров) и мезопелагиальная (200-1000 метров). Отметим сразу, что речь идет об открытом море, прибрежные регионы устроены несколько иначе, поэтому их в это разделение не включают.
Подавляющее большинство морских фотосинтезирующих организмов обитает в эпипелагиали, куда проникает много солнечного света. В первую очередь это фитопланктон, микроскопические водоросли. Они фиксируют углерод в форме углекислого газа из атмосферы и растворенного в воде, производя попутно большое количество питательных веществ. Ими, естественно, питаются все, кто находится рядом: от таких же микроскопических организмов (зоопланктона) до фильтрующих животных — мелких и крупных ракообразных, моллюсков, позвоночных (рыбы, киты).
Отходы жизнедеятельности всех, кто поедает планктон, опускаются глубже и становятся пищей для обитателей мезопелагиали. В этой зоне фотосинтез крайне затруднен, потому что солнечного света до нее доходит совсем мало. Поэтому ее иногда даже называют сумеречной. Там преобладают хищники и редуценты — как микроскопические (в том числе бактерии), так и гигантские. Но все они жизненно зависят от «дождя» органики, поступающего сверху, и постоянно участвуют в дальнейшем захоронении углекислого газа.
Таким образом атмосферный углерод оказывается связан Мировым океаном на века или даже тысячелетия. И любое серьезное нарушение морских экосистем может запустить механизмы обратной связи, которые ускоряют глобальные изменения климата. Если из-за потепления океан поглощает меньше углекислого газа, то его в атмосфере становится больше, усиливается парниковый эффект, океан поглощает еще меньше углерода, парниковый эффект еще больше ускоряется и так далее.
Проверить, как чувствуют себя морские экосистемы в условиях экстремальных температур, взялись ученые из Исследовательского института аквариума залива Монтерей (MBARI, США), Института Hakai (Канада), университетов Сямэньского (Китай), Британской Колумбии (Канада) и Южно-Датского (Дания), а также Министерства рыболовства и океанов Канады. Результаты их работы опубликованы в журнале Nature Communications.
Исследователи проанализировали данные, собранные во время океанических волн жары. В отличие от тех, что на суше, это гораздо более продолжительное событие — повышение температуры воды на несколько градусов относительно нормы или окружающей поверхности моря. Недавно такие волны жары фиксировались в Тихом океане и были столь крупными, что получили имена собственные: «Капля» (The Blob) с 2013 по 2015 год и «Капля 2.0 (The Blob 2.0) в 2019-2020-х. Оба раза области повышенной на 1,5-2 градуса температуры приповерхностных слоев воды простирались на 800-1600 километров на северо-востоке Тихого океана.
В оба этих периода работала распределенная сеть автоматических плотов, которые с интервалом в несколько дней проверяют состояние морской воды на разных глубинах: ее температуру и соленость, а также содержание нитратов, кислорода, хлорофилла и органики (содержащих углерод частиц). Дополнительную информацию несли пробы воды, собранные в нескольких экспедициях, которые проходили одновременно с «Каплями». Ученые проанализировали их на предмет ДНК-маркеров, чтобы понять, какие организмы присутствовали в воде.
Результаты анализа всех данных, имевшихся в распоряжении авторов научной работы, настораживают: во время океанических волн жары пищевые цепочки сильно изменяются. Большая часть органики остается в эпипелагиали, как бы зависая там, и не достигает более глубоких зон. Когда случилась первая «Капля», продуктивность фитопланктона выросла на второй год аномалии. Но весь связанный им углерод остался в приповерхностных слоях воды, органика практически не опускалась ниже 200 метров.
Во время второй «Капли» органики около поверхности было еще больше, но ее наличие нельзя объяснить только жизнедеятельностью фитопланктона. Углерод «взбили» и сохранили в эпипелагиали мелкие хищники. Хотя на этот раз и глубинным обитателям немного пищи досталось: в 2019-2020 годах содержащие углерод микрочастицы в значительных количествах фиксировались на глубине до 400 метров.
Эта информация, как отметили авторы исследования, требует тщательного уточнения и внимания. Поскольку становится очевидно деструктивное влияние океанических волн жары на морские экосистемы. Ученые пока не располагают информацией, были ли у них долговременные последствия и как это временное разрушение «цепочки поглощения углерода» отразилось на климате всей планеты.