Переработка литийионных аккумуляторов — часть их жизненного цикла. Но этот процесс, как правило, энергоемкий и небезопасный для окружающей среды, поскольку при переработке могут выделяться токсичные соединения. Спрос на батареи растет из года в год, сырье требуется для производства электроники и электромобилей, а значит, увеличивается и объем отслуживших свой срок аккумуляторов.
Особенную ценность среди компонентов представляют катодные материалы — оксид лития и кобальта (LiCoO 2 (LCO)) и оксиды лития, никеля, кобальта и марганца (LiNi 1-xy Co x Mn y O 2 (NMC)) из-за их сложной структуры и высокой стоимости. В научной статье, опубликованной в журнале Energy Storage Materials, изобретатели новой технологии привели такие данные: переработка от пяти до 15 тонн отработанных литийионных аккумуляторов может дать одну тонну кобальта необходимого качества, что сопоставимо с объемом, извлеченным из 300 тонн сырой руды.
Сегодня в промышленности для этого применяют пирометаллургические и гидрометаллургические методы, при которых ценные металлы повторно получают либо путем высокотемпературного сжигания, либо за счет экстенсивного химического выщелачивания. Продемонстрировав определенную эффективность, эти технологии отличаются низкой энергоэффективностью, неполным извлечением материалов и образованием опасных побочных продуктов. А методы прямой переработки, включающие сортировку и восстановление катодных материалов, пока используются в основном в лабораторных условиях. При этом большинство исследований сосредоточено на регенерации исходного порошка с низким содержанием никеля, хотя на рынке появляется все больше составов, богатых им. Именно это вещество влияет на производительность, срок службы и энергоемкость батарей.
Чтобы получить из обедненного катодного порошка (NMC111 и LMO) промежуточный сульфат никеля (NiSO 4), а затем богатое никелем вещество (LiNi 0,83 Mn 0,06 Co 0,11 O 2 (83Ni)), американские исследователи ввели замкнутый цикл процесса переработки, объединивший преимущества гидрометаллургической и прямой технологии.
Смешанные отработанные литийионные аккумуляторы сначала подвергали резке, измельчению и просеиванию. Катодный порошок, а также углерод и графит затем собирали для выщелачивания, в процессе которого для растворения катодных материалов использовали раствор, содержащий серную кислоту (H₂SO₂) и перекись водорода (H₂O₂). Концентрации переходных металлов и других примесей количественно анализировали, а переработанный 83Ni прошел все стандартные отраслевые испытания, показав производительность наравне с первичным веществом.
Аккумуляторы, изготовленные из полученного катодного материала, работали почти так же эффективно, как новые, достигая емкости 2100 миллиампер-часов и сохраняя 85 ее процентов после 867 циклов зарядки. Сам процесс переработки позволил извлечь 92,31 процента никеля, кобальта и марганца, а также снизил на 8,6 процента потребление энергии в сравнении с обычными гидрометаллургическими методами и сократил выбросы углерода на 13,9 процента.
Такой универсальный метод апсайклинга, или вторичного использования смешанного сырья, значительно снизил зависимость от первичных ресурсов и продемонстрировал максимальную рентабельность, а также повысил устойчивость и экологичность производства аккумуляторов.