Проблема загрязнения окружающей среды пластиком стоит остро во всем мире. Один из самых массовых полимеров — полиэтилентерефталат, или ПЭТ. Из него делают бутылки для напитков, контейнеры для еды и волокна для одежды. Ежегодное производство ПЭТ превышает 50 миллионов тонн, большая часть этой продукции становится мусором после однократного использования. Существующие методы переработки не всегда эффективны и экономически выгодны, поэтому ученые ищут новые способы утилизации пластиковых отходов.
Одновременно с этим глобальной задачей остается переход химической промышленности на возобновляемое сырье. Многие лекарства, красители и важные вещества получают из ископаемого топлива, например из нефти. Биотехнологии предлагают альтернативу — использовать микроорганизмы для синтеза нужных соединений из более экологичных источников.
Однако природный «инструментарий» бактерий ограничен. Чтобы расширить их возможности, исследователи встраивают в живые клетки химические реакции, которые в природе не встречаются. Этот подход позволяет создавать уникальные производственные цепочки, где микробы играют роль миниатюрных химических фабрик. Новая работа объединила решение обеих проблем: переработки пластика и создания устойчивого производства лекарств.
Исследователи сосредоточились на обычной кишечной палочке Escherichia coli. Ее метаболизм хорошо изучен, что упрощает генетическую модификацию. Целью было внедрить в клетку новую для нее химическую реакцию — перегруппировку Лоссена.
Это процесс из арсенала органической химии, который нужен, чтобы превращать одни органические молекулы в другие, а именно — в амины, важные строительные блоки для многих промышленных химикатов и лекарств. Результаты работы опубликованы в журнале Nature Chemistry.
Сначала ученые проверили, сможет ли эта реакция протекать внутри живой клетки, не убивая ее. Для этого они разработали хитроумный эксперимент: взяли специальный штамм E. coli, который не способен самостоятельно производить пара-аминобензойную кислоту (ПАБК). Без этого вещества бактерия не может синтезировать жизненно важные нуклеотиды и фолиевую кислоту, поэтому погибает.
Затем в питательную среду добавили особое исходное вещество — субстрат для перегруппировки Лоссена. Расчет был прост: если реакция внутри клетки пройдет успешно, из этого субстрата образуется необходимая бактерии ПАБК, и микробная культура начнет расти. Если же реакция не пойдет или окажется токсичной, роста не будет.
В результате бактерии выжили и начали размножаться, причем даже без добавления специальных катализаторов, которые обычно ускоряют перегруппировку Лоссена. Дальнейший анализ показал, что роль катализатора сыграли фосфат-ионы — соединения фосфора, которые в большом количестве содержатся в питательной среде и внутри самих клеток. Таким образом, ученые не только доказали биосовместимость новой реакции, но и открыли неожиданную роль фосфатов в клеточной химии.
Следующим шагом стало подключение к процессу реальных пластиковых отходов. Исследователи взяли обычную пластиковую бутылку из ПЭТ и химически разложили ее до мономера — терефталевой кислоты. Из этого вещества они синтезировали тот же субстрат для перегруппировки Лоссена, что использовали в первом эксперименте.
Модифицированные кишечные палочки поместили в среду с полученным из пластика соединением. Бактерии успешно использовали его, росли и размножались со скоростью, сопоставимой с ростом на чистом, лабораторно синтезированном субстрате. Это доказало принципиальную возможность использовать ПЭТ-отходы как сырье для микробиологического синтеза.
Финальной и самой амбициозной задачей было создание полной цепочки от пластика до лекарства. ПАБК, которую бактерии научились делать из ПЭТ, служит промежуточным звеном на пути к парацетамолу.
Чтобы завершить трансформацию, ученые встроили в геном E. coli еще два гена, которые кодируют ферменты из гриба Agaricus bisporus и бактерии Pseudomonas aeruginosa. Первый из них превращает ПАБК в 4-аминофенол, а второй присоединяет к нему ацетильную группу, в результате чего и получается финальный продукт — парацетамол.
После оптимизации ученым удалось добиться высокой эффективности. Во время однореакторного двухстадийного процесса выход парацетамола из субстрата, полученного из пластиковой бутылки, составил 92%.
Научная работа показала принципиально новый подход к «апсайклингу» — превращению отходов во что-то более ценное. Исследователи успешно встроили в метаболизм живой клетки химическую реакцию, не существующую в природе, и заставили ее работать на благо человека. В итоге метод позволил создать полную производственную цепочку — от пластикового мусора до одного из самых востребованных в мире лекарств.