Молекулярные механизмы работы зрительных и других рецепторов уже определены, но для слуха такую работу проделали лишь недавно. Ученым потребовались несколько лет и десятки миллионов червей, чтобы выяснить структуру белка ТМС-1, который воспринимает акустические колебания.
Прежде чем мы услышим звук, акустические волны заставляют колебаться барабанную перепонку. Через несколько крошечных косточек эти движения передаются на структуры внутреннего уха, заполненные жидкостью. Колебания жидкости воспринимают волосковые клетки, которые стимулируют нейроны и запускают передачу сигнала по нервной системе. Волосковые клетки можно назвать ключевой деталью всей этой схемы: они выступают рецепторами слуховой системы. Но если работа зрительных и других рецепторов изучена вплоть до молекулярного уровня, то для слуха она оставалась загадкой.
Ключевую роль в работе волосковых клеток играют трансмембранные каналоподобные белки (Transmembrane Channel-Like Proteins, TMC): именно они улавливают механические колебания, запуская возникновение электрических сигналов в нервной системе. И недавно ученым из Орегонского университета здоровья и науки удалось установить молекулярную структуру белка TMC1 с точностью до отдельных атомов. Статья Эрика Гуо (Eric Gouaux) и его коллег опубликована в журнале Nature.
Молекулярные механизмы работы этой системы высококонсервативны и практически идентичны у разных животных. Поэтому для получения белка ТМС1 биологи использовали червей Caenorhabditis elegans. Чтобы выделить необходимое для работы количество белка, ученым потребовалось более пяти лет, на протяжении которых они вырастили и использовали порядка 60 миллионов нематод. Чистый белковый препарат исследовали с помощью криоэлектронной микроскопии, чтобы выяснить молекулярную структуру ТМС-1.
ТМС-1 — это трансмембранный белок, пронизывающий клеточную мембрану насквозь. Он представляет собой димер, состоящий из пары одинаковых блоков. Каждый димер включает ключевой домен ТМС-1, который образует в мембране пору, а также кальций-связывающий домен CALM-1, связанный с ТМС-1 изнутри клетки. Наконец, на периферии к молекуле присоединен небольшой домен TMIE — по словам авторов, «напоминающий ручки аккордеона». Механическая деформация клеточной мембраны запускает всю систему в работу, вызывая приток ионов кальция внутрь клетки. Это заставляет ее высвобождать нейромедиаторы и стимулировать активность слуховых нейронов.
«Нейронаука ждала этих результатов не одно десятилетие», — прокомментировал работу видный исследователь механизмов слуха Питер Барр-Гиллеспи (Peter Barr-Gillespie). Теперь, когда мы знаем, как устроено восприятие звука на молекулярном уровне, перед учеными и медиками открываются совершенно новые перспективы в лечении врожденной и приобретенной глухоты.