Японские исследователи раскрыли тайну быстрых движений листьями мимозы стыдливой (Mimosa pudica) в ответ на прикосновения и повреждения. Оказалось, важнейшую роль в этом процессе играют ионы кальция (Ca2+), а сам механизм защищает растение от нападения насекомых.
В отличие от животных, у растений нет нервов и мышц, которые позволили бы им быстро двигаться. Однако Mimosa pudica, известная как мимоза стыдливая, может мгновенно перемещать свои листья в ответ на прикосновения или повреждения. До сих пор оставались загадками как сигнальные молекулы, запускающие это движение, так и физиологическая роль этого процесса. Теперь исследователи из Сайтамского университета (Япония) смогли ответить на эти вопросы. Результаты их исследования опубликованы в журнале Nature Communications.
Мимоза стыдливая — самое известное не насекомоядное растение, которое способно быстро шевелиться. Предыдущие исследования показали, что решающее значение для быстрых движений мимозы имеют электрические сигналы — потенциалы действия, кратковременные изменения мембранного потенциала, которые также представляют собой основу нервного импульса.
Авторы новой статьи создали флуоресцентные растения, позволившие в реальном времени регистрировать внутриклеточную концентрацию ионов кальция (Ca2+) и потенциалы действия. Оказалось, при повреждении листа потенциал действия и изменение концентрации Ca2+ распространялись с одинаковыми скоростями и проходили через место записи в одно и то же время.
Обработка листьев Mimosa pudica ингибиторами каналов Ca2+ и реагентами, захватывающими ионы Ca2+ блокировала как потенциалы действия, так и движения листьев в ответ на прикосновения. Эти данные подтвердили идею о том, что Ca2+ действует как сигнальная молекула, запускающая быстрое движение листьев.
Чтобы определить роль движений листьями, ученые создали трансгенную неподвижную Mimosa pudica и сравнили ее с растениями дикого типа. Выяснилось, что травоядные насекомые, такие как кузнечики, поедали неподвижные листья больше, чем обычные.
Исследователи также визуализировали сигналы Ca2+, движения листа и поведение кузнечика на листе под микроскопом. При питании насекомого листочки начинали складываться последовательно вместе с распространением сигналов Ca2+, мешая кузнечику продолжить питание.