Идея заключается в том, чтобы поместить на космическом телескопе не целое зеркало диаметром 20 с лишним метров, а лишь его средний сегмент от края до края. Получается полоса, длина которой равна нужному для требуемой разрешающей способности диаметру главного зеркала, а ширина — во много раз меньше.
Да, у такой оптической системы будет немало ограничений, она будет дольше собирать свет для формирования изображения каждого объекта исследований. Однако это реалистичная конструкция, которую можно вывести в космос и развернуть там, используя современные технологии. Она способна стать основой для следующей «великой обсерватории NASA» — Habitable Worlds Observatory (HWO, «Обсерватория обитаемых миров»), миссии по обнаружению планет, на которых прямо сейчас возможна жизнь.
Физики и астрономы из Политехнического института Ренсселера (США) в сотрудничестве с NASA изучили и проверили эту концепцию в симуляции со всех сторон. В качестве первичного ограничения они выбрали дистанцию в 10 парсек (примерно 32 световых года) — максимальное расстояние, на которое может отправиться исследовательская миссия и прислать результаты наблюдений обратно в обозримые исторические сроки. Чтобы выбрать цели такой миссии, нужно дистанционно проверить все землеподобные экзопланеты в зонах обитаемости солнцеподобных звезд, находящихся на таком удалении от Земли. Для этого необходим инструмент, способный различить их в инфракрасном диапазоне, на длине волны в 10 микрометров.
Почему землеподобных? Единственное место во Вселенной, где гарантированно есть жизнь, — Земля. Так что похожие на нее небесные тела в приоритете во время поиска жизнепригодных экзопланет. Аналогичная логика применима при выборе звезд, около которых в первую очередь стоит искать жизнь, — желтые карлики обладают неизменными характеристиками достаточно долго, чтобы гарантировать стабильные условия на планетах в своих системах. Ну а длина волны выбрана сразу по нескольким причинам:
- именно в этом участке ИК-диапазона землеподобные планеты излучают больше всего;
- их яркость на 10 микрометрах всего на шесть порядков меньше, чем звезды (в видимом — на 10);
- вдобавок в этом диапазоне можно получить данные о наличии воды и озона в атмосфере экзопланеты.
То есть необходим космический телескоп с зеркалом диаметром 20-21 метра. Напомним, у «Джеймса Уэбба» главное зеркало имеет диаметр всего 6,5 метра и состоит из 18 шестигранных сегментов, расположенных на трех створках, которые при запуске были сложены. Увеличить его в 10 раз невозможно. Но если использовать только полосу, задача становится решаемой. Правда, телескоп с прямоугольным главным зеркалом сможет различить объекты, только если они расположены на линии, параллельной длинной стороне этого зеркала. Для получения полноценного набора данных обо всех окружающих нас звездных системах придется провести съемку под разными углами (минимум дважды).
Жизнеспособность «прямоугольного» космического телескопа его авторы проверили, смоделировав Вселенную в радиусе 40 световых лет от Земли. За год наблюдений он нашел 11 потенциально обитаемых экзопланет, а за 3,5 года — 27, что уже больше целевого показателя HWO. При этом технологически обсерватория с прямоугольным главным зеркалом сравнима с «Джеймсом Уэббом», а при запуске может уместиться под обтекатель Falcon Heavy или Falcon 9.