Вспышки радиоизлучения, которые длятся доли секунды и при этом затмевают целые галактики, остаются предметом астрономического расследования с самого начала истории их наблюдений, то есть с 2007 года. Главным подозреваемым по этому делу проходит звезда с крайне необычными свойствами под названием магнетар. Недавно очередной пример такого яркого события в космосе помог понять, как все-таки оно происходит.
Быстрые радиовсплески — во многом повторение или продолжение того, что астрономии уже доводилось пережить еще в 1960-е годы: тогда в космосе впервые заметили «пульсирующий» радиосигнал, и возникли подозрения, что наконец грядет встреча с внеземной цивилизацией.
Оказалось, что так «мерцает» нейтронная звезда, или, как ее еще называют, пульсар — сжавшееся до диаметра всего несколько десятков километров бывшее ядро очень массивной звезды, которая завершила свой недолгий век термоядерного горения и взорвалась сверхновой.
Почему ее ядро начинает так «пульсировать»: оно принимается интенсивно вращаться вокруг собственной оси, а из его полюсов при этом постоянно идет поток электромагнитного излучения. Ось вращения сильно колеблется, и поэтому бьющие излучением полюса маленькой, но очень опасной «мертвой» звезды то показываются, то скрываются.
Нынешние сравнительно новые для науки быстрые радиовсплески отличаются тем, что они гораздо мощнее обычного излучения пульсара: это мгновенные выбросы такой энергии, на производство которой у Солнца уходит как минимум несколько дней. Самое интересное, что их главными виновниками тоже считают те самые пульсары, только с одним важным отличием: это должны быть нейтронные звезды с невероятно сильным магнитным полем. Для них придумали отдельное наименование — магнетары. Есть мнение, что любой пульсар сразу после своего появления именно таков, просто со временем его магнитное поле ослабевает.
Если все это верно, то надо понять, как именно магнетар производит такой радиовсплеск. Рассматривают два сценария. Первый: это результат ударной волны, которая возникает, когда идущие от звезды потоки плазмы влетают в рассеянное по космическому пространству межзвездное вещество. По второй версии, вспышка радиоизлучения происходит непосредственно внутри магнитосферы «звезды-зомби» или у самых ее границ из-за сильной и хаотичной турбулентности, которая там творится.
Недавно астрофизики из Массачусетского технологического института (США) вместе с коллегами из разных стран задались целью выяснить, которая из двух версий больше похожа на правду. Они объяснили, что это можно установить по расстоянию между местом радиовсплеска и самой звездой. Если вспышка произошла где-нибудь в десятках миллионов километров от магнетара, значит, это сделала ударная волна. Если прямо рядом с ним — это событие в звездной магнитосфере.
Собственное расследование ученые провели на примере быстрого радиовсплеска FRB 20221022A — обнаруженного в 2022 году «космического фейерверка» возле предполагаемого сильно «намагниченного» пульсара в 200 миллионах световых лет от нас. Результатами исследователи поделились в статье для издания Nature (доступна на сервере препринтов Корнеллского университета).
Как рассказали астрофизики, размер, а главное, расстояние источника вспышки от породившей его звезды они распознали по тому, как свет этой вспышки проходил свозь межзвездный газ: точно так же, как свет звезд мерцает из-за прохождения через атмосферу Земли, мерцает и свет далекого объекта, потому он тоже вынужден как-то «обходить» встречающееся на пути вещество.
По характеру этого мерцания удалось определить, что область радиовсплеска имеет размеры никак не более 30 тысяч километров, и находится эта область всего в сотнях тысяч километров от магнетара. Для понимания: между Меркурием и Солнцем — в среднем 58 миллионов километров, и даже видимая во время затмения часть солнечной короны поднимается над поверхностью светила на миллионы километров. Таким образом, расстояние всего в сотни тысяч километров от звезды означает, по сути, непосредственную близость к ней. Из этого ученые сделали вывод, что, по крайней мере в данном случае, имеют дело с турбулентностью в сильнейшем магнитном поле нейтронной звезды.
Быстрые радиовсплески, видимо, еще долго будут оставаться не до конца понятым явлением хотя бы потому, что довольно многие из них повторяются, притом иные — регулярно, то есть через равные промежутки времени. В общей сложности уже насчитываются тысячи быстрых радиовсплесков, и астрономы подозревают, что это только начало: более совершенная техника будет фиксировать эти вспышки все чаще и чаще.