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ABSTRACT
Introduction: Human adenovirus (HAdV)-derived vectors have been used in numerous pre-clinical and
clinical trials during the last 40 years. Current research in HAdV-based vaccines focuses on improving
transgene immunogenicity and safety. Because pre-existing humoral immunity against HAdV types corre-
late with reduced vaccine efficacy and safety, many groups are exploring the development of HAdV types
vectors with lower seroprevalence. However, global seroepidemiological data are incomplete.
Areas covered: The goal of this review is to centralize 65 years of research on (primarily) HAdV
epidemiology. After briefly addressing adenovirus biology, we chronical HAdV seroprevalence studies
and highlight major milestones. Finally, we analyze data from about 50 studies with respect to HAdVs
types that are currently used in the clinic, or are in the developmental pipeline.
Expert opinion: Vaccination is among the most efficient tools to prevent infectious disease. HAdV-
based vaccines have undeniable potential, but optimization is needed and antivector immunity remains
a challenge if the same vectors are to be administrated to different populations. Here, we identify gaps
in our knowledge and the need for updated worldwide epidemiological data.
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1. Introduction

An increasing interest in human adenoviruses (HAdVs) arises
from two major factors: persistent HAdV infections are being
increasingly linked to morbidity in immunocompromised
adults and children undergoing hematopoietic stem cell trans-
plantation [1]; and HAdV vectors are efficient gene transfer
tools and are used for clinical gene transfer (http://www.abe
dia.com/wiley/vectors.php).

HAdVs were used in clinical trials long before their devel-
opment as gene transfer vectors in the late 1980s [2,3].
Identified as an oncolytic agent, the ‘adenoidal-pharyngeal-
conjunctival virus’ (now known as adenovirus) was trialed for
the treatment of cervical cancer during the late 1950s [2,3]. In
addition to their continued use as anti-cancer therapeutics,
HAdV-based vectors are used as vaccines. Beyond develop-
ment of vaccines against tumor antigens, HAdV-based vac-
cines are currently being tested for various infectious agents
such as tuberculosis, HIV, and Ebola virus. The need for vacci-
nation is particularly strong in some developing countries
where infectious diseases account for 50% of all deaths. Of
note though, geographical distributions of endemic or emer-
ging pathogens are not limited by geopolitical borders and
are increasingly associated with climate change, temporal

variation, immigration, and animal habitat. Due to improve-
ments along the way, replication-defective HAdV (and nonhu-
man AdV) vectors have become attractive because they are
biochemically stable, readily produced in high titers (>1013

physical particle/ml), can induce CD8+ T-cell and B-cell
responses, infect multiple nondividing and dividing cell
types, and they can carry relatively large expression cassettes
(up to 38,000 bp). Moreover, antigen expression can be rela-
tively stable over time and the vector genome poorly inte-
grates into the host genome [4,5].

However, the clinical use of HAdV vectors is not risk free: it
could lead to possible recombination with wild type virus,
mobilization (i.e. a vector infected cell that becomes infected
with a replication competent HAdV, which leads to the ampli-
fication and dispersion of the replication-defective vector),
hepatic lesions, thrombocytopenia, neutropenia, systemic
inflammation, and fever [6]. In addition, pre-existing B and T
cell immunity to some HAdV types also creates challenges for
their widespread utility [7]. Currently, HAdV species C type 5 is
the best characterized vector system, but also has the disad-
vantage of being one of the most common HAdVs worldwide
and therefore pre-existing immunity is nearly ubiquitous. A
possible solution to this problem is to use vectors derived
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from adenovirus isolated from animals, or HAdV types that are
rarely found in humans.

In this review, we gather and discuss 65 years of HAdV
seroprevalence data. We highlight gaps in our knowledge
and the need for updated worldwide epidemiological data.
In as much, we include unpublished data from HAdV seropre-
valence in the Republic of Chad and Burkina Faso. We list the
strengths and drawbacks of the techniques that were used for
neutralizing Abs (NAbs) titration. We also discuss the impact of
the geographical distribution of HAdVs seroprevalence with

respect to the development of HAdV-derived vaccines. Finally,
we address the possibility that HAdV-derived vaccines could
be, in some areas, a long-term risk.

2. Background

2.1. Structure and physiopathology

HAdVs are nonenveloped particles containing a double-stranded
linear DNA genome. Structurally, HAdVs are composed of two
major elements, the external capsid and the internal core, in
which viral genome is enclosed [8]. To date, all AdVs have the
same overall capsid architecture, an icosahedral nucleocapsid
that consists primarily of three polypeptides, hexon, penton
base, and fiber [9] surrounding the viral genome of approxi-
mately 34,000–36,000 base pairs. The genome is divided into
early (E) and late (L) genes, expressed, respectively, before and
after replication of the viral genome. A HAdV was first described
in 1953 by Rowe and colleagues while trying to develop adenoid
tissue derived cell cultures [10].

HAdVs are ubiquitous pathogens that generally cause mild,
self-limiting infections with an array of clinical manifestations
[11]. Depending to the type, HAdVs display various tropisms
that correlate with clinical manifestations. HAdVs typically
infect the respiratory, digestive and ocular tracts. Less fre-
quently, HAdVs can be associated with hepatitis, cystitis, coli-
tis, or meningoencephalitis. Approximately 5% of childhood
respiratory tract infections are due to HAdVs. Transmission
generally occurs when children are in childcare centers,
schools, summer camps, and before 5 years old [12]. Most
children have serological evidence of HAdV infection by
10 years of age and, in turn, have robust adaptive immunity.
Recent studies identified HAdVs among 6 to 20% of hospita-
lized children presenting with lower respiratory tract infections
[13,14], and from 10 to 23% of children admitted for acute
gastroenteritis [15–17].

Severe or lethal HAdV infection occurs typically in persons
with immunodeficiency such as transplant recipients or those
living with HIV. Children aged from 6 months to 2 years who
are in childcare and elderly individuals are more susceptible to
severe complications related to HAdV infections. Of note, out-
breaks of HAdVs have been reported globally in close com-
munities, especially in young military recruits [18]. Peaks occur
in winter and spring, but remain common throughout the
year. Transmission involves the airborne route by aerosolized
droplets reaching the upper airways and conjunctiva, by fecal-
oral spread, close personal contact, or by touching environ-
mental contaminated surfaces. Occasionally, contamination
occurs during and solid organ transplantation [19]. The aver-
age incubation period is about 5–12 days, but the contagious
period can last for weeks to months. Vaccines against HAdVs
are currently not available to the general population, but after
several years of hiatus, are reuse within the military in the
United States [20–22].

The predominant HAdV types can change over time
within a region [23] and transmission of new strains across
continents appears to be frequent [24–26]. Considering the
dynamics of seroprevalence, the global dispersion of HAdVs
is particularly important.

Article highlights

� A human adenovirus (HAdV) were isolated in 1953 by Rowe and
colleagues from adenoid tissue.

� HAdVs are nonenveloped particles containing a double-stranded lin-
ear DNA genome and belong to the family Adenoviridae and the
genus Mastadenovirus, grouped into species A–G and classified in
‘types’ based on serology and sequence.

� HAdVs cause mild, self-limiting infections in immunocompetent peo-
ple with an array of clinical manifestations, targeting the lower
respiratory, digestive and ocular tracts (depending of the type), pre-
dominantly children, and people in close contact situation.

� -HAdV-derived vectors have been explored during the last 40 years
and, despite challenges along the way, have become powerful tools
for in vivo gene transfer.

� HAdV have been used in numerous vaccine trials, including a multi-
tude of tumor-associated antigens and infectious agents.

� The use HAdV vectors is not risk free because pre-existing immunity
creates challenges for their widespread utility as vaccines.

� HAdV-C5 is the best characterized vector system, which is also the
most common type that infects humans worldwide.

� Clinical use of HAdV-C5 vectors exposed some limitations, drawbacks,
and side effect are associated with pre-existing humoral and cellular
immunity.

� In 1999, a death in a gene therapy trial remind us the critical need for
fundamental research concerning HAdV use.

� In 2008, the HVTN502 vaccine STEP trails was prematurely interrupted
due to lack of efficacy and increased risk of HIV acquisition in HAdV-
C5 seropositive patients.

� To circumvent pre-existing immunity, vectors derived from ‘rare’
human or from animal AdVs were progressively developed.
However, selective seroprevalence data have been incomplete and
misleading.

� By 2018, hundreds of vaccines (and cancer) trials have used, or are
using, HAdV-based vectors.

� Many studies and clinical trials are based on results that were gener-
ated more than 40 years ago.

� Seroepidemiological data were mostly performed for North America,
Western Europe, China and Japan. HAdV seroepidemiology data from
South America, Australasia and for most countries from Africa are
limited and incomplete

� HAdV-D26 seroprevalence appears relatively high in Africa and Asia
and low in North America and Europe and HAdV-B35 seroprevalence
is reasonably low worldwide, according to the few studies performed.

� NAbs against some NHP AdVs can be detected in humans. Cross-
reactivity is likely the reason.

� Technical procedures performed for seroepidemiologocal investiga-
tions contain noteworthy variation between studies, which make
sometimes comparisons difficult.

� We encourage worldwide seroepidemiological studies, development
of fundamental research on basic vector biology and interactions
between HAdV and preexisting host immunity, systematic HIV sur-
veillance in the trial endpoints, standardization of technical procedure
for seroepidemiology investigations and improvement of a North-
South collaborations.

� Determining HAdV seroprevalence will be challenging mostly due to
increasing international travel and immigrations, and because of
difficult social, medical, political, and military situations in specific
areas.
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2.2. Classification

HAdVs belong to the family Adenoviridae and the genus
Mastadenovirus. The nomenclature of HAdV ‘species’ was intro-
duced in 1960 by L. Rosen [27]. Now HAdVs are grouped into
species A–G (Figure 1 and Box 1). Individual HAdV “type“ nomen-
clature is currently in flux and has not reached a global consensus
within the scientific community. HAdV types were historically
defined by antigenic determinants detected by viral neutralization
assays, hemagglutination properties, morphological, and patho-
genicity criteria [28]. It is accepted that there are about 70 types
[29]. Since HAdV-52 [30] new types have been primarily identified
based on genomic sequencing analysis [31]. Consequently, 40
genotypes have been proposed (http://hadvwg.gmu.edu/).
Sequence of three regions (penton, hexon, and fiber) or of the
entire genome have been recommended to provide alternative
identification [32–34] (Figures 1 and 2(b)). Currently, no globally
accepted nomenclature has been recommended by the
International Committee on Taxonomy of Viruses. To be as infor-
mative as possible in this review, we are using the format ‘human
adenovirus dash species, type’ (e.g. HAdV-C5) whenever
appropriate.

3. The unveiling of HAdVs

In 1953, Rowe and colleagues isolated a transmissible agent
from adenoid tissues undergoing a cytopathic effect. The
following years focused principally on understanding its nat-
ural history (Figure 2(a) highlights some key events). Initially,
studies mostly focused on a group of viruses that shared
specific viral characteristic and classified as “newly recognized
group of common viruses of the respiratory system. In 1956,
the name ‘adenovirus’ was proposed for this new respiratory
tract virus [35–38]. Initially, diagnosis was serological and
based on complement-fixing antibodies to the HAdV group

antigen. Between 1954 and 1956, many outbreaks and spora-
dic cases of febrile illness of unknown etiology mostly with
respiratory or nervous symptoms were registered. In almost all
those in which evidence of HAdVs infection was found,
respiratory tract symptoms were predominant and touched
predominantly young children. In parallel, HAdVs were incri-
minated as new type of adeno-pharyngeal-conjunctival (APC)
virus, responsible for epidemic keratoconjunctivitis [39]. These
studies indicated that in children, HAdV-C1, C2, and to a lesser
extent C5, were primarily responsible for childhood respiratory
infections.

HAdV-B3 was responsible for epidemics in adult civilian popu-
lations and children from 4 to 15 years old. HAdV-C6, D8, and D10
were implicated in epidemic conjunctivitis [40,41]. Interestingly,
HAdV-E4 and B7 were predominant etiologic agents responsible
for acute respiratory disease (ARD) in US military recruits [36]. In
addition, HAdV-B14 was the causative agent of an epidemic of
ARD in army recruits in the Netherlands [42]. These observations
accentuated the degree of HAdV tissue selectivity, raising the
conundrum of how a pathogen with similar biological and phy-
sical characteristics could cause such diverse clinical pathology.
The critical need for anti-HAdV vaccines was naturally raised. By
1957, 14 HAdV types were identified, principally by neutralization
test in HeLa cultures using type-specific rabbit sera.

3.1. 1950s and 1960s: HAdVs etiology and
pathogenicity

During the late 1950s and early 1960s, studies on HAdV infec-
tions and HAdV seroprevalence spread from Europe [43] and
North America [44] to Japan, Taiwan, Singapore, China [45], and
Russia [46]. Studies in indigenous population of the Eastern
Arctic region suggested seroprevalence of 35%, for which 80%
had high NAb titers [47]. These studies suggested that HAdV

Modified from Geisbert et al, J Virol, 2011 & B. Ghebremedhin et al., E J 
Micro and Immu, 2014.

Types suggested for vaccination

Types tested in clinic for vaccination

Gastrointestinal

Respiratory

Urinary

Keratoconjunctivitis
( * for HAdV-B3, HAdV-B7, 

HAdV-B16, HAdV-B21)

HAdVs
HAdVs

Classification of HAdVs according to species, symptoms and use in clinical or preclinical studies 

Figure 1. Adenovirus classification by species (A-G) and clinical symptoms. Types marked in red are vaccine vector candidates. Framed types have been tested in clinic.
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infections were likely pandemic. At that period, seroprevalence
against HAdV-C1, C2, and C5 was more frequent than HAdV-B3,
C6, and B7. HAdV-E4 and B7 seroprevalence was generally low or
nonexistent [48]. However, some notable exceptions where
found: in the Tokyo area HAdV-E4 seroprevalence was very low,
while 73% in Okayama were seropositive. Similarly, among adult
women in Washington, D.C., 71% had ant-HAdV-4 seropreva-
lence antibody while for the other studies in the United States,
the range in adults was between 12 and 29% [43,45]. In retro-
spect, the seroprevalence of HAdV-E4 in Washington, D.C. (and
possibly Okayama) is not surprising, given that the city has high
US military personnel. These pioneering investigations high-
lighted variability of HAdV seroprevalence around the world
and also underlined the first observations of the temporal varia-
tion of HAdV type infections among a given population. In the
early 1960s studies were also performed to understand HAdV-
D26, which was not associated with specific illness. The study,
using intentional infection of male inmates of an American cor-
rectional institution, revealed that HAdV-D26 caused an acute
conjunctivitis and an asymptomatic enteric infection that could

persist for weeks. Moreover, >50% of the ‘volunteers’ from cor-
rectional institutions from seven different American states had
NAbs against HAdV-D26 [49]. By 1961, 19 different types of
HAdVs had been identified, based on serology.

During the late 1960s, HAdV seroprevalence was surveyed in
many parts of the world [50] including populations such as military
camps or children and adults in small closed communities [51,52].
Most of these studies did not identify the HAdV type, and the
studies that did, focused on HAdV-C1 to B7 (the low number
types). Yet, the frequency with which HAdV infection occurred
was unclear because these studies mostly concerned small num-
bers of hospitalized patients or local outbreaks. In 1969, Brandt and
colleagues investigated 18,000 infants in a study lasting 10 years.
The study concluded that HAdVs infections were predominantly in
children with low socioeconomic status, and that many infections
may be asymptomatic. HAdV-C2 (34%), HAdV-C1 (26%), HAdV-C5
(11%), and HAdV-B3 (10%) were isolated from approximately 10%
of the children. Of note, this study provided critical information
about the incidence of HAdV infection (vs. seroprevalence) accord-
ing to the type, and was the first long-term investigation on a large,

Species A (including types 12, 18, 31)
Members of species A, such as HAdV-A12, have the ability to induce tumors in newborn rodents [54]. To our knowledge, HAdV-A31 is the only A proposed
for vaccination strategy, principally because of its ability to escape the host's immune surveillance. Moreover, limited evolution of clinical isolates of HAdV-
A31 indicated low probabilities for the emergence of new subtypes in the recent years [173].

Species B (including types 3, 7, 11, 14, 16, 21, 34, 35, 50, 55)
The species B HAdVs (which, as mentioned above are from gorillas) are subdivided into subspecies B1 (types B3, B7, B16, B21 and B50) and B2 (types B11,
B14, B34, B35 and B55) based on DNA homology. Most subgroup B1 members cause respiratory infections, while subgroup B2 are mainly associated
kidneys and the urinary tract infections [174]. In addition to low seroprevalence, members of the species B use the CD46 or desmoglein (for types B3, B7,
B11 and B14) as a primary receptors. Among the species B, type 35 was intensively characterized and launch for pre/clinical trials against HIV, Ebola,
malaria, tuberculosis or the respiratory syncytial virus [175,176]. Historically, HAdV-B7 vector was the first species B to be developed [177,59], later type B11
[178], B3 [164], B14 [165], B50 [95] and B34 [166,167] were proposed as alternative candidate for vaccine platforms (Figure 1).

Species C (including types 1, 2, 5, 6, 57)
The five species C (C1, C2, C5, C6 and C57) are the most common types reported in most populations. Members of this species cause a significant proportion of acute
respiratory tract infections in children [179,180]. Despite widespread pre-existing immunity, HAdV-C5 vectors are currently being used as vaccine platforms in many
countries, principally against HIV [181,182], malaria [183,184,185], Ebola virus [186,187,188,189,190], influenza virus [191], tuberculosis [192,193], or in pre-clinical
studies that are targeting Zika virus [194,195], Clostridium botulinum [196], type O foot-and-mouth disease virus [197], Middle East respiratory syndrome coronavirus
[198,199], rabies virus [200,201], or Dengue virus [202]. In mice and NHPs, HAdV-C2 delivered antigens protected against Ebola virus [203]. Because the other species C
types likely have biological characteristic similar to C5, C6 is being proposed as candidate for vaccination and because of its lower seroprevalence [204,205,206].

Species D (including, but not limited to types 8, 9, 10, 13, 15, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 39, 42, 43, 44, 45, 46,
47, 48, 49, 51, 53, 54, 56)
This is the largest of the seven species with 44 out of the 70 recognized types. Except for a few types that cause epidemic keratoconjunctivitis (Figure 1), most of the
types from the species D are associatedwith moderate or asymptomatic diseases. The majority of HAdVs from this group have been isolated or detected in HIV-positive
patients, suggesting an opportunistic pathogenicity profile [29,207]. However, knowledge about their pathogenicity is still limited and very few of these HAdVs have
been exploited as candidates for vaccination. CD46 seems to be used as primary receptor and integrins and/or CAR as alternative primary receptors. However, some
members of this species also use sialic acid-modified surface moieties [208,209]. HAdV-D26 is frequently being advertised as a lower seroprevalent platform and
consequently is the best characterized from this group. Additionally, D26 is the only member from the species D being evaluated in large-scale human vaccination trials
against HIV and Ebola virus [210,211]. Among other candidate from this group, type D24 [212], D28 [142,213], D43 [214], D48 [215,216], D49 [120,217], and most
recently D56 [130] or D19 [218] (recently renamed D64 [219]) were also suggested or tested for pre-clinical vaccination studies.

Species E (type 4)
HAdV-E4 is the only member from this species and is frequently implicated in outbreaks of ARD in military training camps [220]. Phylogenetically, HAdV-E4
falls with the simian AdVs, and therefore likely jumped the species barrier several decades ago. Vectors derived from type E4 were designed to optimize
systemic and mucosal antibody responses and were clinically tested as Ag delivery system against influenza virus (including the bird flu H5N1 strain)
[221,222,223], but also more recently against HIV (https://clinicaltrials.gov/ct2/show/NCT03408262). HAdV-E4 has been tested as vaccine vector candidate
for other infectious diseases such as Hepatitis B [170] and respiratory syncytial virus [171], supporting future exploration of HAdV-E4 as vaccine vectors
against alternative pathogens [59].

Species F (types 40, 41)
HAdV-F40 and F41 are associated with gastrointestinal disease exclusively [224]. HAdVs from the F groups have thus the potential to be excellent
candidates for oral vaccination or gene therapy targeting gastrointestinal or mucosal tract [168,169,225]. These types were thus proposed as oral delivery
vector candidate for vaccination against HIV [172] middle East respiratory syndrome coronavirus [199] or for the induction of allergen-specific intestinal
mucosal tolerance [225]. In addition, levels of NAb to this groups seems relatively low in children and elderly.

Species G (type 52)
HAdV-G52 - Polysialic acid is the cellular receptor for type G52 [226].
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random cohort [53]. By 1967, 31 HAdV types had been identified.
During this period, Trentin et al. reported in 1962 that injection of
HAdV-A12 of into newborn Syrian hamsters led to the induction of
sarcomas at the site of administration [54] HAdVs subsequently
became a model of choice for molecular biologists to study DNA

replication, RNA transcription and splicing, and the molecular basis
of cell transformation.

In the late 1960s, the US army initiated a program for ARD
surveillance. Initially started during World War II [55], the first
epidemiological studies of respiratory illnesses in soldiers at
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Fort Bragg, North Carolina and Fort Dix, New Jersey, found that
ARD syndrome caused large outbreaks, with a high-risk period
during the initial 5 weeks of training [56,57]. Previous epide-
miological surveys showed a direct correlation of HAdV-E4 and
B7-related ARD rates with crowding. Infection rates approached
70% and were primarily limited to the military population.
Approximately 20% of the infected individuals required hospi-
talization [58]. During the 1970s, HAdVs infections were largely
studied in the military recruits, principally because of the unu-
sual pathogenicity and selectivity of HAdV-E4 and B7.
Consequently, in 1971 the US began routine administration of
a lyophilized HAdV-E4 and B7 oral vaccine [59], which signifi-
cantly reduced respiratory morbidity at training centers. The
benefits of immunization were significant in term of both, ARD
hospitalizations and cost-benefit [60].

3.2. The 1970s and 1980s: breaking down HAdVs
biology and global epidemiology

The 1970s was the period where persistence of HAdV infection
was reported, principally within adenoid vegetation of asymp-
tomatic hosts. Persistant HAdVs were thought to promote
high NAb levels that did not, counterintuitively, clear HAdVs
from the host. HAdV persistence may be one of the causes
responsible for its pandemic nature [61]. The late 1970s was
also marked by a better understanding of the HAdV structure,
cell cycle, and mechanism of DNA replication [62]. Historically,
the 1980s was a crucial period for the development of mole-
cular biology. Control of HAdV gene expression was better
characterized as well as the structure of the virus components.
In addition, HAdV-C2 and C5 were developed into gene trans-
fer vectors [63].

During the 1980s the seroprevalence of other HAdV types
was explored. Epidemiological data suggested that some HAdV
types are common in all age groups and populations, while
other types infected later in life. Furthermore, about half of the
HAdV infections were asymptomatic, meaning that physicians
were not detecting infections of nonpathogenic HAdVs. Thus,
epidemiological studies on HAdVs generally focused on types 1
through 8, and type B21, which were those most frequently
associated with the symptomatic disease.

One of the largest (n = 338 individuals) studies on HAdV
seroprevalence was performed on Italian children using micro-
neutralization tests. This study showed that ~75% of the chil-
dren were positive for at least one HAdV type among the 33
tested. The highest seroprevalence was for HAdV-C2 (41,5%)
and HAdV-C5 (33%), followed in decreasing order by HAdV-C1,
B3, C6, D31, and D18. NAbs against other serotypes were pre-
sent in less than 10% of the children or never found, including
HAdV-D9, D20, D26, and D32 [64]. This study was consistent
with the seroprevalence described in the United States, with a
higher frequency found for types 1 through 7, but also high-
lighted the presence of less common and less virulent types.
Moreover, this study challenged early conclusions concerning
the common global distribution of HAdVs [65] and highlighted
the substantial differences. In 1983, Schmitz and colleagues
addressed the epidemiology of 31 HAdV types, based on
approximately 25,000 reports to the WHO from 1967 to 1976.
They found an absolute frequency of HAdV-C2, C1, B7, B3, C5,

C6, E4, and D8 in decreasing order (with a large gap between
HAdV-C5 and C6). The southern hemisphere showed a higher
incidence of HAdV-E4 and species B (without HAdV-B3 and B7),
and a lower incidence of HAdV-C6, whereas HAdV-D8, D13, D19,
and species A were rarely found. For species B, many differences
were found between countries and ages, principally concerning
HAdV-B3 and B7 [66].

Initially found by electron microscopy in stools from chil-
dren with diarrhea, HAdV-F40 and F41 were linked to enteric
infections [67,68]. HAdV-F40 and F41 genomes were notably
different from the 39 previously described types and were
resistant to numerous attempts of in vitro culture [69]. HAdV-
F40 and F41 could not be distinguished from each other by
classical hemagglutination-inhibition tests, indicating a close
antigenic relationship. Of note, HAdV-F40 and F41 have the
shortest of all HAdV hexon hypervariable regions, which may
play a role in their stability at low pH. The early 1980s was also
marked by the development of restriction enzyme analysis of
HAdV genomes, which became a valuable epidemiological
tool in studying the geographic and temporal occurrence of
different HAdV types. Analysis by DNA restriction profile
allowed differentiation between HAdV-F40 and F41. Later,
monoclonal antibodies were used to differentiate them by
neutralization assay [70]. According to the first epidemiologi-
cal studies using neutralization assays, HAdV-F40 and F41
were likely pandemic. Sera from healthy children from Hong
Kong, New Zealand, Gambia, Kuwait, and the United Kingdom
were 40%–50% seropositive. Surprisingly, the 16 samples from
Guatemala were negative [71,72]. A study performed among
children in Thailand demonstrate a relatively low prevalence
for HAdV-F40 and F41 (2%), suggesting that among the spec-
trum of diarrheal etiologies, they may be proportionately less
prevalent in a tropical climate than they are in countries with
temperate climates [73].

The 1980s were a critical period for epidemiologic studies
on HAdV-B7. Previous data from the United States and Europe
suggested that HAdV-B7 was frequently associated with
severe illness that caused fatal lower respiratory disease and
outbreaks in schools, hospitals, and military facilities [74,75].
The highest seroprevalence against HAdV-B7 was detected in
Taiwan during the 1960s, where about 30% of children were
positive. However, in that study, HAdV-B7 was the only type
for which adults (vs. children) were more likely to have NAbs
[45]. In comparison to Japan and the US, HAdV-B7 infections
were also more frequent and occurred at an earlier age in
Taiwan. In contrast to Australia, Brazil, China, Sweden, the
United States, the United Kingdom, Germany, and Belgium,
HAdV-B7 was rarely isolated in Japan. The low frequency of
HAdV-B7 isolation in Japan during the 1980s (before the out-
break in 1995) and its particularly high frequency in US and
European military recruits was a unique characteristic [76]. By
1985, ~41 HAdVs types were identified.

Taken together, studies from the 1980s highlighted major
advances in HAdVs seroprevalence: (i) global HAdV serology
was associated with greater variability (ii) there was significant
variations of temporal epidemiological patterns of HAdVs
infection for a given region, and (iii) the existence of frequent
asymptomatic HAdV infections making epidemiology unpre-
dictable and therefore a need for permanent surveys.
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3.3. The 1990s: a renaissance of Ad biology, vaccination,
and gene therapy

During the late 1980s and early 1990s, HAdV seroepidemiological
studies took place during difficult sanitary and health context in
developing nations, where the need for the prevention of child-
hood pneumonia or diarrhea was imperative. In 1990, the WHO
estimated that 14.6 million children <5 years old died each year in
developing countries. Of note, studies from that time indicated
that HAdVs were not of significant health risks (with the exception
of HAdV-E4 and HAdV-B7 in military training centers).

3.4. HAdVs and immunodeficiency

The 1990s was also a dynamic period for the HAdVs scientific
community because of the impact of HAdV-related diseases
linked to HIV infection. By the end of 1990, between 8 and 10
million peoples were thought to be living with HIV [77], with
HAdV infections more virulent and frequently in HIV-positive
individuals [78]. Along with rotavirus, HAdVs were frequently
incriminated in HIV-positive individuals with diarrhea [79],
encephalitis [80], hepatitis [81], pneumonitis [82], and gastro-
intestinal infections [83]. In addition, HAdV infections were
reported in pharmacologically-induced immunocompromised
individuals undergoing cell or organ transplantation [84]. In
1995, ~ 49 HAdVs types were identified.

3.5. A better understanding of HAdV molecular biology:
medical hopes and disappointments

During the 1990s, advances in molecular and cellular biol-
ogy were used to improve our understanding of the
mechanisms by which HAdVs counteract antiviral immune
defenses [85]. As a result, this period saw the successful
demonstrations of replication-defective HAdV vector
expression of open reading frames/cDNA in animals.
Quickly, HAdV vectors became a popular gene transfer
tool for mammalian cells [86,87]. HAdV-C2 and C5 domi-
nated the gene transfer field because they could be readily
propagated to high titers. In 1991, the first effective in
vivo gene transfer with HAdVs was performed [88]. In
1993, the first human gene therapy trial used a recombi-
nant HAdV-C5 vector at the Clinical Center, NIH, on a 23-
year-old cystic fibrosis patient. Other clinical studies on
various disease, using HAdV-C2- or C5-based vectors fol-
lowed [89–91]. 25 years on, HAdVs are still the most com-
mon vectors used in clinical trials worldwide [92].

The use of a viral vector for the delivery of antigens in vacci-
nation was first described by in 1982 and the WHO recognized
the potential value of such a delivery system [93]. Replication-
defective HAdV vectors (typically deleted in the E1 region) were
particularly promising because they were relatively cheap to
produce, stable, and provided long-term immunity [94]. In pre-
clinical trials HAdV-based vaccine induced strong humoral
response and T-cell specific immunity [95]. Many thought that
HAdV-C5-based vaccines would be extremely efficient to induce
protection against human pathogens.

3.6. The limits of HAdV-C5 for clinical application

Clinical use of HAdV-C5 vectors exposed some limitation, draw-
backs and side effects [96]. During preclinical testing in immuno-
logically naïve animals, HAdV-C5 vectors induced robust
responses [97]. Not surprisingly, pre-existing immunity to HAdVs,
which concerned the majority of the world’s population, pre-
cluded robust responses against the encoded antigens. In some
populations the pre-existing immunity against HAdV-C5 was
>90% by 2 years of age [98]. HAdV-specific T cells, NK cells and
cytokines also contribute to the fading efficacy of HAdV-based
vaccines in individuals with pre-existing immunity [99].

HAdV-based vaccination may also include other adverse effects
as illustrated by STEP, an HIV Vaccine Trial Network 425 (HVTN502
STEP) [100]. HVTN is the world’s largest publicly-funded interna-
tional collaboration for the development of vaccines against HIV.
HVTN502 STEP was an international, randomized, double blind,
placebo-controlled Phase II test-of-concept clinical trial. This trial
enrolled 3,000 HIV-negative volunteers from diverse populations
at high risk of HIV infection, including men who have sex with men
and female sex workers. HVTN502 STEP was prematurely inter-
rupted due to lack of efficacy and also because vaccinees who had
high NAb titers against HAdV-C5 had a statistically significant
increased risk of HIV acquisition during the first 18 months post-
vaccination [101,102]. Ten years later, the mechanisms by which
these side effect occurred are still not fully understand and cer-
tainly complex. HIV acquisition occurred in uncircumcised men
who have higher levels of mucosal inflammation and HIV suscept-
ibility in general. Growing evidence suggest also that specific
generation of immune complexes with HAdV-C5 and NAb can be
captured by antigen-presenting cells that present conserved
HAdV-C5 epitopes via the MHC II pathway and thus create an
acute local proinflammatory response [103]. In individuals with
high levels of HAd-C5 NAbs that inflammatory environment
could lead to the proliferation of HAdV-specific CD4 T cells (IL-
17+), which have preferentially mucosal tropism [104] and are
particularly susceptible to HIV infection (through a mechanism
linked to CCR5 and �4�7 expression) in comparison to other
virus-specific CD4 T cells [105]. Of note, the epitopes recognized
by memory T cells against HAdVs are broadly shared among
human and nonhuman AdVs [106,107]. Thus, higher levels of
mucosal inflammation added to recurrent stimulation and muco-
sal trafficking of HAd-C5 specific memory CD4 T cells during
vaccination might lead to this adverse effect. These data shed
light on the complex cellular events that could rise from the
interactions between host pre-existing immunity and, theoreti-
cally, other HAdV derived vectors [102,108].

In addition, the late 1990s witnessed the first death of a
volunteer in a gene therapy trial. An 18-year-old who had
ornithine transcarbamoylase (OTC) deficiency was adminis-
tered 6 × 1011 viral particles/kg of an HAdV-C5 vector contain-
ing the OTC cDNA. The man died 4 days later from multiple
organ failure [109]. In addition to ethical and technical issues
(mostly concerning the controversial aspects of eligibility cri-
teria for participation and explanation of the risks and benefits
of the clinical experiment), these events remind us the critical
need for further fundamental research concerning administra-
tion of HAdVs and their complex interactions with the host’s
pre-existing immunity.
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3.7. Alternatives to HAdV-C5 vectors

To circumvent pre-existing immunity, vectors derived from
‘rare’ human or from animal AdVs were progressively devel-
oped. Canine type 2 (CADV-2 or better known as CAV-2)
was the first nonhuman adenovirus vector [110]. The HAdV
types were selected according to their supposedly low ser-
oprevalence [111,112]. The NHP AdVs were selected primar-
ily for production characteristics as all could be propagated
and produced in GMP-certified human cell lines. The human
and nonhuman AdVs are generally stable, and easily pro-
duced, but in some cases their biology still needs to be
better characterized.

In principal, the rare HAdVs and NHP AdVs should be unaf-
fected by pre-existing anti-HAdV humoral immunity. However,
seroprevalence against chimpanzee, simian and rare HAdV types
exists in human populations [113]. For example, some rare HAdV
types were chosen for their low seroprevalence in North America
and Europe (e.g. HAdV-D26) – only to be significantly more pre-
valent in some African countries. One study demonstrated that the
original host of species B HAdVs are gorillas, and that HAdV-B’s
jumped the species barrier a handful of times starting
~100,000 years ago and have now affected human health for
most of our species lifetime [114]. Even though many people are
not exposed to NHP AdVs, they may have pre-existing immunity
that cross-reacts against NHP-AdVs. Take for example a study
using a chimpanzee AdV (ChAd-3) as an Ebola vaccine vector.
Twenty volunteers from the Washington, D.C. metropolitan area
were enrolled in a clinical trial. More than 40% of those volunteers
had significant levels of anti-ChAd-3 antibodies and no evidence
of the source of exposure was described [115]. The other conclu-
sion from this interesting study is that species D HAdVs are the
quintessential HAdVs. HAdV-E4 is another clear example of a NHP
AdV that jumped the species barrier. Other studies showed that
NHP types carry the potential for cross-species transmission
between monkeys and humans [116]. Moreover, if selection of
alternative HAdV types has been largely driven by the absence of
NAbs in North Americans, very little attention has been given to
cross-reactive AdV T cells [107,7]. It is clear that global AdV ser-
oepidemiology is incomplete, especially concerning African coun-
tries that are often primary targets for vaccination campaigns.

4. HAdV-based vaccines: results from the last
20 years

This section focuses on HAdVs that have been chosen for vaccine
development, mainly because of their theoretical low seropreva-
lence compared to HAdV-C5. Potential HAdV candidates will be
first presented by species. Based on HAdV seroprevalence in the
clinical setting, only half of the known HAdV types cause morbid-
ity. Hence, HAdVs infection can be clinically silent and thus only
seroepidemiology investigations can evaluate the incidence
within a given population. Technically, HAdV seroprevalence is
characterized as one in which exhibits limited cross-reaction with
others. The definition is nevertheless difficult to apply because
some cross-reactivity can occur, especially among HAdVs from the
same species. This is particularly problematic concerning the
recently identified species D HAdVs that have been generated
by recombination [117].

4.1. Preclinical and clinical trails

By 2018, hundreds of vaccine (and cancer) trials have used, or
are using, HAdV-based vectors (https://clinicaltrials.gov/ct2/
home and Box 1). Today, many HAdV-based vectors are mod-
ified versions of HAdV-C5 [94,118], but its use is becoming
more restricted to limited cohort of cancer patient and/or
single gene transfer. In regard to vaccination strategies that
may very well involve millions of random people anywhere on
earth, the clinical use of HAdV-C5 may be limited.

4.2. Seroprevalence of principals HAdV vaccine
candidates

Many studies from the last 20 years, that contain data from
healthy individuals (if not, pathology will be outlined) in a
specific area, are discussed (Supplementary Tables 1–4). We
recently assayed sera collected in Burkina Faso and the Republic
of Chad (West and Central Africa, respectively). Data are
included here (organized by species and continents). A caveat
due to technical conditions and thresholds at which samples
are considered positive are indicated, as well as number of
samples, location and year(s) of the studies (when available).
Only HAdV types that are suggested or tested for preclinical or
clinical studies are included in the Supplementary Tables 1–4,
and only HAdV types that are tested in clinic are displayed in
Figure 3.

4.3. Moving forward

Gathering data from about 50 studies, it is first notable that
the majority has been performed using cohorts from North
America, Europe, Africa, or China. Cohorts in South America,
the Middle East, Asia (except China and Japan) and Oceania,
are poorly represented (Supplementary Tables 1–4 and
Figure 3). In Africa, Europe, and Asia, only a handful of coun-
tries where investigated for HAdV seroprevalence. In Africa,
except for a handful of exceptions, most of the data have been
generated from scattered sub-Saharan populations. In Europe,
studies where performed primarily in Western Europe, and in
Asia, 80% of the investigations took place in China. Data
gathered here outlines that members of species C, D, and B
were principally investigated.

Among the species C, HAdV-C5 seroprevalence is the most
widely reported, either as principal target of the studies or for
comparison with other human or nonhuman AdVs. HAdV-C5 is
clearly pandemic, but the proportion of seropositive people in
North America is globally lower compared to Europe, Asia, and
Africa (100% of seroprevalence detected in some sub-Saharan
countries) [119]. HAdV-C2 global seroprevalence is relatively
high (36–92%) and � HAdV-C5 [120,121]. HAdV-C6 was pre-
sented as a low prevalence type by one study in the United
States (8.5% adult and 2% children [122] and reach 12% in of
healthy adult in China [123]), while others studies show a
seroprevalence rate fluctuating between 78% in Thailand
and Cameroon; 73% in South Africa and 71% in Malawi [124].

For the types belonging to species D, HAdV-D26 and to a
lesser extent D48 and D28, infections are globally more fre-
quent in Africa. HAdV-D26 NAbs were detected in 88% of the

604 F. J. MENNECHET ET AL.

https://clinicaltrials.gov/ct2/home
https://clinicaltrials.gov/ct2/home


serum tested from Cameroun [124], and ~70% in the Republic
of Chad and for some areas of Burkina Faso (unpublished
data). By contrast, seroprevalence was always �12% in the
United States and Europe among all the studies listed in this
review. In China and Thailand, seroprevalence for HAdV-D26 is
35–60% [124–126]. Studies that targeted HAdV-D48 or HAdV-
D28 are consistent with a lower seroprevalence compared to
HAdV-D26, including for Africa.

For species B types, global seroprevalence for HAdV-B7,
HAdV-B11, and HAdV-B35 are relatively low. Similarly to others
species, seroprevalence appears to be slightly higher in Africa,
reaching 20% for B35 [126–128], and around 30% for B11 [129]
[98,127]. However, the results fluctuate between countries. In
Europe and North America, the prevalence for B35 and B11
NAbs were <10%, with the exception of Haiti (22% and 30%,
respectively [127]) and one study performed on United States
healthy adults older than 50 years (22% for B35 [130]). In Asia,
results are similar to Europe and North America, with the excep-
tion of Thailand, where B35 seroprevalence reached around
17% for a healthy group of adults associated with high HIV
risks. [126].

Studies from Japan suggested a higher rate of B11 sero-
prevalence (18–30%) compared to Europe and North America.
Moreover, HAdV-B11 seroprevalence rate in Japan was glob-
ally higher than B35 [129,131]. Of note, only limited studies
were performed in Asia for these types. On the other hand, the
seroprevalence for HAdV-B7 was largely explored during last
20 years in Japan. Indeed, HAdV-B7 was rarely isolated in
Japan before 1995 when a nationwide outbreak suddenly
occurred [132,133]. Despite the epidemic, HAdV-B7 seropreva-
lence remained relatively low in Japan (2–13%) [133–135]
compared to China (13–85%) [123,136], the United States
(27–78%) [122,137], and Belgium (38%) [131].

For species, A, E, and F, the seroprevalence for the type HAdV-
E4 was evaluated in healthy adults in the United States and
Europe (17–46%) [123,132]. Not surprisingly, seroprevalence in
United States army recruits was notable (71%) [137]. The argu-
ments used for HAdV-E4-based vaccines were its biological prop-
erties and respiratory tropism. HAdV-F41 showed high
seroprevalence worldwide according to the handful of studies
performed on US, European, and Asian samples, reaching a
maximum of 95% for healthy children from south China [138].
It is also clear that reporting HAdVs seroprevalence in popula-
tions from vast and diversified countries (in terms of climates,
populations and densities) such as the United States, China, or
Brazil can poorly reflect the likely diversity. For example, Kahl and
colleagues showed substantial HAdV-C5 seroprevalence varia-
tions within healthy adult populations across the United States,
fluctuating from 35% for Northeast region to 71% for Upper
Midwest region [139]. More recently, Wang et al. found signifi-
cant variation between healthy adults from coastal regions vs.
inland regions in China [140].

Given the overlapping epidemiology of HAdVs, it is clear
that understanding host immunity remains a challenge, espe-
cially because HAdV vectors could be used for different popu-
lations [141]. Most HAdV epidemiology studies also found that
seroconversion against the vast majority of HAdV types is an
age-dependent process. Clearly, some types are pandemic (C5,
C2, F40, and F41) independently of the sanitary condition of
the country. Other types such as HAdV-B35, B11, D26, D48,
D56, and D58, are globally less frequent, but their seropreva-
lence fluctuates considerably. In addition, and compared to
Europe or North America, the average seroprevalence of these
types is higher in Africa and for some regions of Asia. Of note,
many of the studies listed here also investigated the propor-
tion of sera that exhibited low, medium or high NAb titers,

Figure 3. Seroprevalence for adenovirus types used in clinic. Calculated according to the results of about 30 studies from the last 20 years, this figure estimates
by continent the serology of HAd-E4, C5, D26, and B35.
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indicating that these ‘rare’ types have generally low NAb titers.
Consequently, as vectors, they might be less problematic
when used as population-based vaccines. Nevertheless, at
least 10% of the samples from the Republic of Chad
(N’Djamena) and Burkina Faso (Ouagadougou) had anti-
HAdV-D26 NAb titers above 1000 (unpublished data).

Understanding how alternative AdV vectors are affected by
pre-existing humoral immunity constitutes a challenge. Yet,
pre-existing immunity is not the only criterion that will influ-
ence HAdV vector efficacy. As indicated above, HAdVs species
and types have different receptors, tropism, transduction,
longevity, and immunogenicity profiles. For instance, mice
do not have ubiquitous or homologous expression of CD46
(or desmoglein 2) and combined with the fact that these
HAdVs do not replicate in mice, substantially limits preclinical
studies of HAdV derived from species D and B in small animals.
Thus, identification of functionally relevant immune responses
is an essential element that needs to be determined to design
potent vaccines. Of note, HAdV vectors based on B35 or D26
have lower immunogenicity compared to HAdV-C5 [98].
Moreover, in contrast to injection, oral administration can elicit
mucosal immune responses and greatly circumvent the pre-
existing antivector immunity [142]. These issues shed light on
the complexities between the species and types, and strongly
indicates that more research is required to identify the
mechanisms that play a key role in the induction of protective
immunity induced by HAdV derived vaccines.

5. Technical procedure for type-specific
seroprevalence assays

Supplementary Tables 1–4 contain noteworthy variation
between values from studies performed on similar popula-
tions. These variations can be due to differences in the num-
bers of samples, technical conditions, and thresholds at which
samples are considered positive. These technical disparities
can make comparisons among different studies particularly
difficult. Historically, the first methods used to determine anti-
body titers in human sera were complement-fixation [143] and
hemagglutination-inhibition tests [56]. We now know that
species C HAdVs agglutinated erythrocytes from some animals
and not others because of the differential expression of the
CAR on their membrane [144].

Today, the use of neutralization assay using transgene
expression are more sensitive, and less demanding in terms of
amounts of virus, cells, and sera [145]. Transgenes cloned into
the vectors for these assay are either GFP (green fluorescent
protein) [146], luciferase [126], �-galactosidase [147], or
secreted alkaline phosphatase (SEAP) [148]. The type of cell
line used is critical, especially for studies that compared HAdV
types because of the variability in infection efficacy. Cells lines
used in the studies listed here are mainly the A549 (human
adenocarcinomic alveolar epithelial cell), HEK 293 (human
embryonic kidney cells), Hep2 (HeLa derivative/human cervix
carcinoma cells), 911 (human embryonic retinoblasts cells), or
PER C6 (human embryonic retinal cells) cell line, because they
are permissive to infection by a large range of HAdV types. In
addition to the ability of the virus to infect the cell line, the
TCID50 (the number of physical viral particles needed to infect

50% of the cells) between of HAdV types needs to be similar to
be able to compare respective NAb titers. Studies presented
here also displayed a different threshold for which the sera are
considered positive. Most studies used serum titer >16 or dilu-
tion >1:4 to define a threshold, but substantial variations can be
found ranging from 8 to 100 for sera titer and 1:2–1:32 for sera
dilution. In addition, NAb titers were determined either by the
dilution at which 50% (EC50) or 90% (EC90) of cell viability or
transgene expression was observed. These variations make
comparison between studies nebulous. A low threshold might
lead to excessive false positive samples. In addition, distortions
in the neutralization curves of samples at high serum concen-
trations are often observed, possibly resulting from nonspecific
interactions. By contrast, a high threshold might fail on low
titers samples and include them as negative, especially for
HAdV types that generally displayed weak NAb titers.
Standardizing the parameters will reduce the variability in
sera titer values and make easier and more accurate compar-
ison between studies.

6. Conclusion

The use of HAdVs with low seroprevalence as antigen delivery
platforms was one of the main strategies to circumvent pre-exist-
ing HAdV humoral immunity. Arguments in favor of these vectors
often underlined their potential abilities to overcome HAdV-C5-
specific NAb [131,149], and enhance immune responses in popu-
lations with a high prevalence of HAdV-C5 immunity. But at least
one question remains: in a situation where seroprevalence against
rare types is high, what are the risks of using a vaccine derived
from this type? The results from HIV STEP trial should not be
underestimated. HAdV-C5 vector administration increased HIV
acquisition in participants with high pre-existing HAd5 immunity.
Will this situation also hold true for other HAdV vectors expressing
different antigens? HIV acquisition will not be an endpoint that
most vaccine trial organizers will include/promote. Furthermore,
quantifying the human and economic costs of increased HIV
infections versus reduced vaccine target is not straightforward.
We therefore recommend systematic monitoring of HIV acquisi-
tion when any kind of HAdV vector is used in the clinic [102,150].
Others strategies have been established to overcome HAdVs pre-
existing immunity such as the development of nonprimate-AdV
vectors. Most of these vectors are derived from canine, bovine,
porcine, ovine, and fowl and are currently in preclinical stages of
development. NHP-AdV vectors from monkey origins are the most
advanced and have reach clinical trials against Ebola, Malaria, HIV,
tuberculosis, HCV and influenza principally [115,151–154].
Animals-derived vectors share some appropriate characteristics
of the well characterized HAdV-C5, but with seemingly negligible
seroprevalence among human population [7,107,155]. However,
while NAb titers against a ChAdVs in healthy volunteers were 2%
in the United States [119], substantial NAbs titers were detected in
the sub-Saharan Africa [156], Brazil [157], and China [125].

We believe that developing seroepidemiological research
on rare HAdVs need be amplified to generate an accurate
global mapping of HAdV seroprevalence and consequently
improve the safety and the efficacy of these vectors. Too
many studies are based on results that were generated more
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than 40 years ago. But, determining HAdV seroprevalence will
be challenging. International travel and increasing immigra-
tion foster pathogen spreading from previously isolated areas.
Sample collection can be problematic due to social, medical,
political, and military situations in a specific area. Shipping
biological samples from Africa to outside of the continent
can be particularly costly, administratively demanding, and
time consuming. For this reason, we encourage development
of local serological studies to update the database. Thus, it is
imperative to develop, standardize, and adapt technical pro-
cedures to countries with limited technical resources to per-
form accurate, robust, and reproducible data at minimum cost.
This is all the more important because low income countries
are usually the ones that need most to improve vaccination
coverage and to be most susceptible to support vast vaccina-
tion campaigns. In addition, HAdVs are constantly undergoing
recombination [117]. Increasing urbanization and globalization
of poor sanitary developing countries, coupled with insuffi-
cient resources for control, are combinatorial factors that are
greatly increasing probabilities of generating new types and
consequently periodic outbreaks of HAdV infections [158].

We also encourage fundamental research on interaction
between the pre-existing immunity, AdV and antigen-present-
ing cells. A better understanding of cellular and molecular
interactions between host immunity and AdVs would inevita-
bly improve the next generations of vaccine platforms, possi-
bly allowing one to safely target specific population or
individuals according to their unique serology profile. This
challenging task will require a concerted effort between coun-
tries, research facilities, medical staff, and political authorities.

7. Expert opinion

After access to potable water, vaccination is the most efficient
tools to prevent disease. AdV-based vaccines have undeniable
potential. Nevertheless, optimizing is needed, especially against
complex diseases such as HIV or malaria. Anti-vector immunity
remains a challenge if the same vectors are to be administrated
to different populations because most of us likely been infected
with at least five different HAdV. The ideal scenario would take in
consideration the HAdV sero-epidemiology of targeted areas for
vaccination campaigns, associated to a systematic survey of HIV
acquisition following clinical trials.

Fundamental research addressing virus-host interactions are
essential. Relationship between pre-existing humoral and cellular
immunity [159–161]. Studies on interactions of the host with pre-
existing T cells, anti-microbial peptides, and natural occurring
immunoglobulins need also to be developed and clarified, espe-
cially concerning the ‘rare’ HAd types. The variability of the host
immune response, in particular during preclinical trials in ani-
mals, has to be taken in consideration. It is also possible that the
limitations imposed by vector-host interactions could be over-
come if postpurification modifications of the capsid are included
[162]. Other approaches include genetically fusing epitopes to
capsid proteins and/or single-round replicating vaccines that
increase the transgene-directed immune response and allow a
lower inoculation dose. Restricted replication in targeted cells or
tissues may increase safety and potentially immune focus on the
transgene.

8. Five-year view

Remarkable efforts have been made to improve HAdV-derived
vector efficacy, safety, and to sidestep pre-existing immunity.
Vaccine candidates against malaria, Ebola, or HIV may reach
the market in the near future (Box 1). In the context of our
review, one key issue is whether the HIV surveillance will be
incorporated into vaccine trial endpoints in regions where
infection rates are high. In these regions, will governments
and NGOs recommend the used of AdV-based vaccines?
Hopefully, seroprevalence will be characterized before per-
forming vaccination campaigns. Another key issue is the pau-
city of data on seroprevalence for areas where future ‘rare’ Ad-
based vaccines could be used. This task could be challenging
due to cultural, social, and governmental issues. There are
potential strategies to complement to serology-based assays:
with the advent of next generation sequencing, pathogens
will be more easily detected in blood samples. This will clarify
the issues of AdV prevalence [163].

Finally, success will depend on better understanding the
biology of each AdV type. Undoubtedly, fundamental research
in term of cell attachment, and intracellular trafficking will
enhance AdV vectors efficacy and safety for gene transfer
and vaccination.
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