Математики из «Криптонита» смоделировали джозефсоновские контакты — Naked ScienceNaked Science
4 сентября
14 минут
Никита Шевцов
251

Математики из «Криптонита» смоделировали джозефсоновские контакты

Ученые наложили ограничения на решения уравнений, моделирующих джозефсоновские контакты, — перспективные элементы квантовых компьютеров.

ibm12-1_1

 

Джозефсоновскими называют контакты вида сверхпроводник-изолятор-сверхпроводник (часто сокращается как SIS). Толщина слоя диэлектрика в них подобрана так, чтобы сопротивление в нем пропадало, как только примыкающие к нему сверхпроводящие материалы охладятся до своей рабочей температуры. Физическая причина эффекта — «просачивание» способных к туннелированию электронов сквозь диэлектрик. 

 

Эффект Джозефсона интересен как типичный пример явления, которое было невозможно ни использовать, ни даже полноценно открыть без теоретических расчетов той же математики, уравнений, с помощью которых Джозефсон и предсказал его в 1962 году. Дело в том, что сам факт протекания сверхтока через вставку из диэлектрика, разделяющую сверхпроводники, наблюдался как минимум с начала 1930-х годов. Однако, не имея теоретического объяснения наблюдений, экспериментаторы описывали их как «короткие замыкания сверхпроводников» по аналогии с короткими замыканиями обычных. Лишь использование уравнений, описывающих, как именно туннелирование куперовских пар электронов позволяет им поддерживать сверхток в джозефсоновском контакте, изменило ситуацию. Из этого примера видно, что с самого начала практическое использование этого эффекта без математического обеспечения было невозможно.

 

Протекающий через джозефсоновские контакты ток чрезвычайно чувствителен к малейшим изменениям внешнего магнитного поля. Это свойство используется в конструкции СКВИДов — сверхпроводящих квантовых интерферометров (Superconducting Quantum Interference Device), лежащих в основе конструкции многих экспериментальных квантовых компьютеров.

 

В 2015 году первые кубиты на джозефсоновских контактах были построены и в России (МФТИ и Российским квантовым центром). Учитывая, какой эффект квантовые компьютеры с устойчиво работающими кубитами могут оказать на криптографию, научные вычисления и искусственный интеллект, исследования свойств джозефсоновских контактов приобрело большое практическое значение.

 

Математическое описание работы джозефсоновских контактов началось ещё до экспериментального обнаружения их существования. В 1962 году английский физик Брайан Джозефсон вывел дифференциальное уравнение, описывающее поведение подобного контакта (впоследствии названного в его честь). В его математической модели параметры контакта описываются двупараметрическим семейством обыкновенных дифференциальных уравнений на двумерном торе («растянутой» двумерной поверхности трехмерного «бублика»).

 

Однако у такой модели джозефсоновских контактов есть ряд ограничений: исходные джозефсоновские уравнения не имеют явных решений, по крайней мере таких, которые можно было бы записать в элементарном виде, с помощью элементарных функций (а насколько известно на сегодня, и с помощью спецфункций тоже). Это означает, что с его помощью сложно описать и предсказать целый ряд свойств, которые наблюдаются у этих контактов на практике. Соответственно, не имея таких явных решений, труднее и строить на основе подобных контактов квантовые компьютеры с предсказуемым поведением составляющих их когерентных кубитов.

 

В новой статье авторы использовали ранее установленный в работах других математиков факт: поведение джозефсоновских контактов и описывающее его уравнение Джозефсона можно свести к трехпараметрическому дважды конфлюэнтному уравнению Гойна. Ранее уже было показано, что для определенных значений исходных параметров в уравнениях Гойна конструируются явные решения, которые для базового уравнения Джозефсона отсутствуют. Но если его можно свести к уравнению Гойна, то эти решения могут быть использованы для исходного уравнения Джозефсона.

 

«При таком подходе, как и в других попытках математического поведения джозефсоновских контактов, исследуется динамическая система на торе, — объяснил Игорь Нетай — у которой есть три параметра: A, B и ω. Последний в новой работе принимался за постоянную».

 

После замены координат уравнение Гойна как раз и задает эту динамическую систему на торе. При этом физически интерпретируемой величиной остается число вращения параметров. При малых значениях ω (физически ей обычно соответствует джозефсоновская частота генерации, то есть интенсивность излучения фотонов джозефсоновским контактом, через который идет ток выше критического), можно перейти от базовой «гладкой» функции, описывающей поведение контакта без дискретизации, к функции, которая выглядит почти как кусочно-ступенчатая, с дискретизацией результата (числа вращения динамической системы). За счет этого можно дискретизировать сигнал с джозефсоновского контакта, что очень важно с практической точки зрения: дискретный сигнал легко измерить, а значит, и понять стоящие за ним физические процессы. 

 

Ранее в других работах было установлено существование так называемых языков Арнольда — геометрических областей фазового захвата, в которых число вращения динамической системы на торе, описывающей параметры джозефсоновских контактов, неизменно. Следует понимать, что область фазового захвата относится к пространству параметров математического описания джозефсоновских контактов. Тем не менее, описание это имеет прямое отношение к поведению самих контактов. 

 

Дело в том, что внутри каждого языка Арнольда, несмотря на изменения значений A и B, часть физических параметров поведения джозефсоновских контактов неизменна. А вот в пространстве между языками Арнольда эти физические параметры резко, скачкообразно изменяются. Как комментируют ситуацию сами авторы работы, было бы интересно знать границы этих областей фазового захвата.

 

Границы эти геометрически устроены довольно сложно. Игорь Нетай замечает: «Если комплексифицировать [рассмотреть уравнение с комплексными коэффициентами] используемое для описания уравнение Гойна, то оказывается, что такие границы — это объединение всего четырех аналитических комплексных многообразий». Новая работа стала первым исследованием, в котором удалось это выяснить, и в теории это заметно упрощает математическое представление границ языков Арнольда, что является довольно значимым результатом.

 

Другой важный итог работы — исследование семейств явных решений (полиномиальных решений) уравнения Гойна. Множество точек, которыми параметризуются решения уравнений Гойна, — это алгебраические кривые (множество нулей многочлена от двух переменных). Авторы с помощью вычислений ограничили род алгебраических кривых, параметризующих явные решения уравнения Гойна. Как известно, родом алгебраической кривой называют род её римановой поверхности, и его выявление также существенно упрощает математическое описание физического поведения джозефсоновских контактов с помощью уравнений Гойна.

Вчера, 12:51
4 минуты
Никита Шевцов

В начале этого месяца озоновая дыра над Южным полюсом достигла своего минимального размера с момента обнаружения — 10 миллионов квадратных километров.

Сегодня, 11:48
4 минуты
Никита Шевцов

Ученые решили проверить способность грызунов обучаться новым навыкам и создали для них специальные машины.

21 октября
3 минуты
Сергей Васильев

Используя снимки 200 тысяч далеких объектов, астрономы оценили воздействие слияний галактик на звездообразование.

17 октября
4 минуты
Илья Ведмеденко

Согласно представленным данным, вместо космического аппарата «Космос-2535» на орбите сейчас находятся пять объектов.

16 октября
3 минуты
Никита Шевцов

Биологи обнаружили вирус, который не может самостоятельно заражать клетки. Предполагается, что он пользуется помощью других вирусов.

17 октября
5 минут
Илья Ведмеденко

Американские военные намерены получить прототип инновационного орудия в 2023 году.

17 октября
4 минуты
Илья Ведмеденко

Согласно представленным данным, вместо космического аппарата «Космос-2535» на орбите сейчас находятся пять объектов.

16 октября
3 минуты
Никита Шевцов

Биологи обнаружили вирус, который не может самостоятельно заражать клетки. Предполагается, что он пользуется помощью других вирусов.

16 октября
2 минуты
Илья Ведмеденко

Ученые сравнили состояние мозга женщин, имеющих детей, и тех, у кого их никогда не было. Выводы оказались более чем интересны.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.