Ученые определили состав биотоплива из водорослей

Исследователи показали, что биотопливо по составу имеет мало общего с нефтью, но зато у него есть нечто общее с зеленкой.

1 723

Ученые определили состав биотоплива, полученного из микроводорослей Spirulina platensis, с помощью масс-спектрометрии высокого разрешения. Были изучены две фракции биотоплива, которые получаются после того, как массу из водорослей обработают специальным методом. Исследование опубликовано в журнале European Journal of Mass Spectrometry. Работа проведена группой ученых из Сколтеха, Института энергетических проблем химической физики РАН, Института биохимической физики им. Эмануэля РАН, Объединенного института высоких температур РАН, МГУ и Московского физико-технического института.

 

Водоросли, как спасение экологии

 

Биотопливо, как альтернативный источник энергии, представляет особенный интерес для изучения, ведь оно помогло бы решить такие проблемы, как истощение запасов нефти и глобальное потепление. В отличии от нефти, биотопливо производится из возобновляемых природных ресурсов, а при его сжигании выделяется меньше парниковых газов. Бразилия, например, уже обеспечивает с помощью биотоплива 40% своих потребностей. В качестве сырья для биотоплива используют сельскохозяйственные культуры и другие растения. Однако в этом случае приходится занимать плодородную землю, которая могла бы вместо этого кормить людей. Перспективным сырьем для биотоплива являются морские микроводоросли, которые не требуют ни чистой воды, ни земли. Водоросли активно поглощают углекислый газ, а значит, их использование действительно полезно для уменьшения парникового эффекта. Топливо из микроводорослей называют биотопливом третьего поколения, и в настоящее время ведутся активные работы по его производству.

 

Водоросли Spirulina platensis

 

Рецепт биотоплива

 

Если мы узнаем состав биотоплива, мы сможем усовершенствовать процесс его производства. Первоначальные техники получения горючего из водорослевой массы были энергетически невыгодными, так как много энергии затрачивалось на высушивание водорослей, в которых содержится много воды. Для коммерческого применения нужен был новый, более эффективный метод. И такой метод придумали – это так называемое гидротермальное сжижение: мокрую биомассу нагревают до температуры больше 300℃, сжимают давлением в 200 атмосфер и на выходе получают топливо. Примерно тот же принцип действует в природе, когда под воздействием больших температур и высокого давления в недрах Земли образуется нефть, только в реакторе это происходит быстрее. В результате получаются две фракции: жидкое биотопливо и густая масса, которая остаётся в реакторе. Это смеси, состоящие из тысяч индивидуальных компонентов, и для определения их состава наилучшим образом подойдёт масс-спектрометрия.

 

Масс-спектрометрия

 

Масс-спектрометрия – метод исследования, при помощи которого можно определить состав вещества. Метод основан на том, что в электрическом и/или магнитном поле разные соединения ведут себя по-разному – в зависимости от их соотношения массы и заряда m/z. На выходе получается масс-спектр – график с пиками интенсивности, где каждому пику соответствует свое значение m/z.  

 

Масс-спектры жидкой фракции (вверху) и твердой фракции (внизу)

 

С помощью масс-спектрометрии ученые исследовали биотопливо, полученное из водорослей Spirulina platensis. В процессе гидротермального сжижения все вещества с температурой кипения меньше 300 градусов выходят из реактора в виде газа и охлаждаются в специальной емкости. Таким образом получается жидкая фракция, а в реакторе остается твердая фракция. Масс-спектрометрический анализ показал, что обе фракции содержат больше всего веществ, у которых в составе есть N и N2, но компоненты твердой фракции более разнообразны и по свойствам отличаются от компонентов жидкой фракции. Найденные в биотопливе вещества не имели ничего общего с веществами, которые содержатся в обычной сырой нефти, хотя и являются горючими. Масс-спектрометрия позволяет узнать только молекулярные формулы веществ (например, C18H35N2). Чтобы получить какую-нибудь информацию о структуре молекул, исследователи применили метод замены водорода на дейтерий.

 

Замена водорода на дейтерий

 

Когда водород заменяется на дейтерий, масса иона становится больше и пик в спектре смещается. По тому, сместился пик или нет, ученые определяют, в каком месте в молекуле стоял водород. Однако не любой водород отдаст свое место дейтерию, точнее, не любое место водород сможет освободить.

 

Перед тем, как запустить молекулы в масс-анализатор, их нужно зарядить, иначе электромагнитное поле на них не подействует. У обычных молекул заряд z=0, в них число протонов равно числу электронов. А если, например, к молекуле присоединить протон (частица с зарядом +1), то она станет ионом с зарядом z=1. Процесс превращения молекул в ионы называется ионизацией.
 

Перед запуском в масс-анализатор молекулы образца подвергают ионизации. В данном случае к нейтральным соединениям добавлялись протоны, и они превращались в положительные ионы. Присоединенный протон легко заменяется на дейтон, но оказалось, что в некоторых компонентах биотоплива замены не происходит. Ученые это поняли по интенсивности смещенного пика, который получается при замене. У обычной нефти смещённый пик имел такую же интенсивность, как несмещенный, а значит, замена произошла полностью. В случае с биотопливом интенсивность смещенного пика была в пять раз меньше. Это значит, что под одним пиком кроется несколько соединений и не во всех из них есть присоединенный водород, вместо которого мог бы встать дейтерий. Если вещества не поддаются ионизации, значит, они уже являются положительными ионами и в таком виде содержатся в биотопливе. Эти вещества похожи на некоторые красители, такие как, например, бриллиантовый зеленый, который входит в состав зеленки.

 

В ядре дейтерия, или тяжелого водорода, кроме протона, есть нейтрон, который влияет на массу, но не на заряд

 

Евгений Николаев, член-корреспондент РАН, профессор Сколтеха, научный руководитель Лаборатории ионной и молекулярной физики МФТИ  комментирует: «Исследование продуктов гидротермального сжижения микроводорослей с помощью масс-спектрометрии имеет важное значение для повышения эффективности производства биотоплива. Дальнейшая работа должна быть сконцентрирована на использовании сортов водорослей с максимально высоким содержанием липидов  и создание таких сортов с использованием генетической модификации. Так мы сможем выбрать из них самое эффективное сырье для биотоплива».

 

Физтех
43Статьи
Московский физико-технический институт (МФТИ). Блог о последних научных открытиях ученых МФТИ и других российских вузов и исследовательских центров в различных областях науки, от астрофизики до генной инженерии.
1 723

Подпишись на нашу рассылку лучших статей и получи журнал бесплатно!


Комментарии

Аватар пользователя Никита Солдатов
Вчера
Собаки не утратили способность улавливать причинно-...
Аватар пользователя Илья Соколов
20 сен
В свете стремления руководства ОАК разделить...
Аватар пользователя Илья Ведмеденко
20 сен
Прежде чем писать эту, извините, ересь, вы бы сначала...

Колумнисты

Физтех
43Статьи
Discovery Channel
18Статей
Сколтех
8Статей
СО РАН
5Статей

Комментарии

Plain text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <iframe> <embed> <br/>
  • Строки и параграфы переносятся автоматически.

Comment text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <br/>

Быстрый вход

или зарегистрируйтесь, чтобы отправлять комментарии
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку