Малые дозы рентгеновского излучения не вредят стволовым клеткам человека

Биофизики показали, что после воздействия малых (80 мГр) доз рентгеновского излучения стволовые клетки остаются жизнеспособными, активно делятся и не накапливают повреждений ДНК в следующих поколениях.

3 345

Выбор редакции

Статья опубликована в журнале Aging. Сергей Леонов, директор физтех-школы биологической и медицинской физики МФТИ, руководитель лаборатории разработки инновационных лекарственных средств МФТИ: «Доза излучения 80 мГр является той дозой, которую нередко получает человек при часто применяемых совместно с клеточной терапией процедурах визуализации внутренних структур и процессов организма, таких как компьютерная томография и рентген. Наши исследования помогают делать прогнозы побочных эффектов и рисков для здоровья у людей, проходящих все чаще применяемую клеточную терапию одновременно с диагностическим облучением».

 

На данный момент стремительно и продуктивно развивается направление регенеративной медицины. Основанная на применении стволовых клеток технология направлена на восстановление и обновление поврежденных тканей и органов человека. Стволовые клетки обладают высоким потенциалом к размножению, способностью к самообновлению и дифференциации, то есть превращению в различные типы клеток. Находясь практически во всех органах и тканях взрослого организма, они могут распознавать место повреждения, мигрировать в него, напрямую замещать поврежденные клетки и помогать заживлению. В то же время считается, что активное применение в медицине диагностики, основанной на ионизирующем излучении (компьютерной томографии, маммографии или рентгена), потенциально способствует образованию и накоплению повреждений в стволовых клетках и их последующей передаче клеточным потомкам. Это влечет за собой гибель клеток, их преждевременное старение, а также онкотрансформацию.

 

Рисунок 1: Микрофотография ядра мезенхимальной стволовой клетки человека. Слева направо: ДНК клеточного ядра, окрашенное DAPI (синий); скопления (фокусы ) белка γH2AX (красные точки), маркирующего повреждения ДНК; наложенные микроизображения (merged)

Рисунок 1: Микрофотография ядра мезенхимальной стволовой клетки человека. Слева направо: ДНК клеточного ядра, окрашенное DAPI (синий); скопления (фокусы ) белка γH2AX (красные точки), маркирующего повреждения ДНК; наложенные микроизображения (merged)

 

Принимая во внимание недостаток данных о влиянии малых доз радиации на проявление отдаленных эффектов в стволовых клетках, международная группа ученых, включая Андреяна Осипова из Федерального медицинского биофизического центра имени А. И. Бурназяна, Сергея Леонова и Анастасию Цветкову из Московского физико-технического института, провела серию экспериментов. В результате было показано, что воздействие малых доз радиации не вызывает  проявлений нестабильности  генома, преждевременного старения и накопления повреждений ДНК в потомстве облученных клеток.


Реакция организма на рентгеновское излучение

 

При обычном рентгеновском обследовании человек получает от 0,001 до 10 мГр (мДж/кг) излучения в зависимости от типа процедуры. Дозы до 100 мГр считаются малыми, выше 1 000 мГр — большими. Изучением последствий воздействия больших доз рентгеновского излучения занимаются давно. Выяснено, что они вызывают зависимое от дозы увеличение количества таких повреждений, как двойные разрывы ДНК, которые затем приводят к гибели клеток, сбоям в работе генов, ответственных за подавление развития опухолей и активации онкогенов. Однако до сих пор вопрос о негативном воздействии малых доз рентгеновского излучения, которые каждый из нас получает при плановых обследованиях, является противоречивым. В настоящее время мировыми регуляторными органами принята так называемая «линейная беспороговая модель», которая подразумевает, что сколь угодно малая доза ионизирующего излучения губительна для живых клеток. Это некорректно и не соответствует действительности, поскольку все мы подвергаемся воздействию естественного радиационного фона, а его полное отсутствие приводит к ухудшению способности клеток устранять повреждения ДНК.

 

Рисунок 2: А) стрелками обозначены делящиеся клетки, помеченные флуоресцентными красителями и имеющие повреждения <span>—</span> двойные разрывы ДНК; Б) зависимость количества делящихся клеток контрольной группы и клеток, облученных дозами в 80 мГр и 1000 мГр в течение 11 поколений.

Рисунок 2: А) стрелками обозначены делящиеся клетки, помеченные флуоресцентными красителями и имеющие повреждения двойные разрывы ДНК; Б) зависимость количества делящихся клеток контрольной группы и клеток, облученных дозами в 80 мГр и 1000 мГр в течение 11 поколений.

 

Критерии оценки воздействия малых доз

 

Интерес к изучению двойных разрывов ДНК обусловлен тем, что среди повреждений ДНК, вызываемых ионизирующим излучением, именно они являются наиболее критичными для дальнейшей судьбы клетки. Репарация или исправление этих повреждений ДНК происходит медленно, в то время как двойные разрывы, не устраненные в ходе этого процесса, приводят к серьезным цитогенетическим нарушениям, инактивации подавляющих опухоли генов или активации онкогенов и гибели клеток. Долгое время не существовало метода для оценки образования двунитевых разрывов ДНК после воздействия малых доз радиации. Классические способы давали возможность увидеть последствия только больших доз. Благодаря развитию иммуноцитохимии у биофизиков появился инструментарий, позволяющий не только подсчитать количество двойных разрывов ДНК, образовавшихся после воздействия малых доз радиации, но и распознать механизм их распределения в клеточном ядре и восстановления. Скопления белков, участвующих в исправлении ДНК, после «окрашивания» с помощью помеченных флуоресцентными красителями антител под микроскопом можно увидеть в виде ярко светящихся точек, которые получили название фокусов. Например, одним из таких белков, маркирующих повреждения ДНК, является модифицированный гистоновый белок уН2АХ.

 

Судьба потомства

 

Стоит отметить, что в клетке существует два основных пути устранения двойных разрывов. Один из них, гомологическая рекомбинация, — медленный, но корректный путь, который позволяет безошибочно восстановить утраченную информацию в цепи поврежденной ДНК. Другой путь, негомологичное соединение концов, приводит к утрате генетической информации и, как следствие, возникновению ошибок и мутаций. В то же время по быстрому, но не точному пути устраняются 8 из 10 разрывов, образующихся в облученной клетке.

 

Ученые установили, что стволовые клетки спустя 24 часа после облучения в дозе 80 мГр имеют большее количество фокусов уН2АХ, чем клетки, облученные большой дозой — 1 000 мГр. Однако такое повышенное содержание фокусов уН2АХ наблюдалось только в делящихся клетках и отсутствовало в покоящихся (см. Рис.2). Известно, что двойные разрывы ДНК могут образовываться в норме в процессе клеточного деления. Такие разрывы устраняются путем корректного способа гомологической рекомбинации. В то же время, если проследить за дальнейшей судьбой облученных клеток на протяжении 11 поколений, то становится очевидным, что потомки клеток, облученных в дозе 80 мГр, не отличаются от потомков необлученных клеток. Более того, в потомстве клеток, облученных малой дозой радиации, не наблюдалось проявлений нестабильности генома, изменений в процессах деления и преждевременного старения. (см. Рис.2 и Рис.3)

 

Малые дозы рентгеновского излучения не вредят стволовым клеткам человека Рисунок 3: А) стрелками отмечены стареющие клетки, помеченные красителями (синим цитоплазма, белым клеточные ядра); Б) количество состарившихся клеток контрольной группы и клеток, облученных дозами в 80 мГр и 1000 мГр в течение 11 поколений.

 

Андреян Осипов, профессор РАН, заведующий отделом экспериментальной радиобиологии и радиационной медицины ФМБЦ им. А. И. Бурназяна : «Проведенные исследования свидетельствуют о том, что наличие через 24 часа после воздействия рентгеновского излучения в дозе 80 мГр в культивируемых стволовых клетках человека фокусов γH2AХ связано с процессами клеточного деления и не приводят к отдаленным последствиям облучения, связанным со старением. Это очень важный вывод, поскольку фокусы γH2AХ в настоящее время активно используются для биодозиметрии радиационных воздействий. Непонимание биологической значимости остаточных фокусов может привести к существенной переоценке доз и риска облучения в малых дозах».

 

Naked Science Facebook VK Twitter
Физтех
96Статей
Московский физико-технический институт (МФТИ). Блог о последних научных открытиях ученых МФТИ и других российских вузов и исследовательских центров в различных областях науки, от астрофизики до генной инженерии.
3 345
Комментарии
Аватар пользователя Timoteo Cirkla
15 мин
Граждане нэйкедсайенцы, вы серьёзно??? Они же...
Аватар пользователя Евгений Ковалёв
2 ч
Никто и не сомневался , что нибиру это просто миф..
Аватар пользователя Евгений Сильвестров
4 ч
Или взрыва не было вовсе :) И видимая вселенная не...

Колумнисты

Физтех
96Статей
Сколтех
36Статей
Discovery Channel
28Статей
СО РАН
6Статей
Комментарии

Быстрый вход

или зарегистрируйтесь, чтобы отправлять комментарии
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку